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Cytokines like interferons (IFNs) play a central role in regulating innate and specific immunities against the 
pathogens and neoplastic cells. A number of signaling pathways are induced in response to IFN in various cells. 
One classic mechanism employed by IFNs is the JAK-STAT signaling pathway for inducing cellular responses. 
Here we describe the non-STAT pathways that participate in IFN-induced responses. In particular, we will focus 
on the role played by transcription factor C/EBP-β in mediating these responses. Cellular & Molecular Immunology. 
2007;4(6):407-418. 
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Introduction 
 
Interferons (IFNs) induce antiviral and antitumor effects; and 
promote the development of immune responses (1, 2). They 
regulate a broad range of physiologic processes, including 
cytokine and chemokine synthesis (3), mRNA translation (4), 
RNA and protein stability (5, 6), antigen presentation (7), 
nuclear trafficking (8), cell differentiation (9, 10), and cell 
division and apoptosis (11, 12). There are three main classes 
of interferons: type I (predominantly IFN-α, β and κ), type II 
(IFN-γ) (13) and type III (IFN-λ1 and -λ2 also known as 
IL-28 and IL-29). They transduce signals through related but 
distinct pathways. The Janus tyrosine kinase (JAK)-signal 
transducer and activator of transcription (STAT) pathway 
(Figure 1) is one of the best characterized IFN-signaling 
pathways (2). Most IFN-receptors are heteromers consisting 
of at least two different polypeptides. For example, the type I 
IFN-receptor is constituted by IFNAR1 and IFNAR2 (14); 
the type II IFN-receptor by IFNGR1 and IFNGR2 (15); and 

the type III-IFN receptor by IFNLR1 and IL-10R2 (16, 17). 
In all cases, receptor peptide 1 functions as the ligand 
binding protein while the receptor peptide 2 serves as the 
signaling chain. The STAT1 and STAT2 proteins have been 
reported to be activated by the IFN-α/β via tyrosyl 
phosphorylation at critical residues, using tyrosine kinases 
Tyk2 and JAK1 (2, 18, 19), although in some cells STAT3 is 
also activated (20, 21). After being activated (i.e. tyrosyl 
phosphorylated) STAT1 and STAT2 heterodimers associate 
with the non-STAT DNA-binding protein, IFN gene 
regulatory factor-9 (IRF-9/p48/ISGF3-γ) (22). The resultant 
trimeric transcription factor, ISGF3, binds to the IFN-stimulated 
regulatory elements (ISREs) to induce the expression of 
many IFN-α/β-regulated genes. Only the STAT1 protein is 
tyrosyl phosphorylated by JAK1 and JAK2 at the ligand- 
engaged type II IFN receptor. STAT1 dimers, thus formed, 
migrate to the nucleus, bind to the γ-IFN-activated sequence 
(GAS) to drive γ-IFN-induced gene expression (23). The 
ligand-bound type III IFN receptor, although activated in a 
manner similar to the type I receptor, activates multiple 
STATs-STAT1, STAT2, STAT3, STAT4 and STAT5 (24). 
However, receptor mutants that fail to activate STAT1 and 
STAT2, can still activate STAT3 and STAT4, indicating a 
novel aspect of the functioning of this receptor (24). The 
STAT proteins are rapidly activated by IFN-treatment usually 
in less than 10 sec, and reach a maximum by 15 min. There- 
after their nuclear activities decline owing to nuclear export 
(25-27), and/or desphosphorylation by TcPTPase (28), 
despite the presence of IFNs in the extracellular environment. 
Additionally, the suppressor of cytokine signaling-1 protein, a 
STAT-regulated inhibitory protein, turns off the activated 
JAKs (29). Although the JAK-STAT pathways may explain a 
lion’s share of IFN-actions, there might be other signaling 
pathways given the observations that some IFNs, particularly 
IFN-γ, can regulate several genes through non-STAT binding 
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promoter elements and at a time when the activated-STAT 
levels are barely detected.  
 
Additional IFN signaling pathways 
 
Several other IFN-regulated signaling elements and pathways 
are required for the generation of diverse responses to IFNs. 
Some of these signaling pathways are STAT1-dependent and 
others are STAT1-independent (30, 31). Some of these 
additional IFN signaling cascades play key roles in 
optimizing the IFN-induced responses. For example, some 
studies have shown p38α is phosphorylated and activated in 
a type-I-IFN-dependent manner in several IFN-sensitive cell 
lines (32, 33) and a p38-inhibitor blocks IFN-α-dependent 
transcription of genes containing ISREs (34). However, 
inhibition of p38 activity did not block tyrosyl phosphorylation 
of STAT1 or STAT2, or formation of the mature ISGF3 
complex and the binding of this complex to ISREs. These 
observations indicate that type-I-IFN-induced p38 activity 
acts independently of STAT1-activation (34). p38 is also 
required for type-I-IFN-driven gene transcription through 
GAS elements (32). Further studies have identified the 
upstream and downstream effectors of type-I-IFN-activated 
p38-signaling pathway (31). The biological function of this 
pathway accounts for the growth-inhibitory effects and 
antiviral responses of type I IFNs (31).  

Other studies reported that type I IFNs activated a 
phosphatidylinositol 3-kinase (PI3K)-signaling pathway that 
occurred independently of STAT1 but was dependent on 
JAKs (35-37). The PI3K-signaling pathway can mediate 
either pro-apoptotic or anti-apoptotic signals in response to 
IFNs. The PI3K-signaling cascade also regulates IFN- 

inducible activation of the mammalian target of rapamycin 
(mTOR), via Akt, which mediates the initiation of mRNA 
translation (31).  
 
A variety of IFN-γ response elements 
 
Promoter analysis of a number of IFN-α/β-regulated genes 
and some IFN-γ-responsive genes revealed that a conserved 
ISRE is critical for IFN response (38). IFN-γ-stimulated 
genes contain a variety of response elements (39). The 
kinetics and requirements for de novo protein synthesis for 
the expression of several IFN-γ-responsive genes are quite 
distinct. Based on the temporal expression, they can be 
grouped into “early”- and “late”-induced genes. Most known 
early IFN-γ-stimulated genes possess a unique element 
known as the GAS (40) or the related palindromic IFN 
response element (pIRE), which binds a homodimer of 
STAT1 in response to IFN-γ (41).  

As already said, the temporal and functional diversities in 
the IFN-γ induced responses suggest the activation of several 
other IFN-induced signaling pathways. Such regulatory 
signaling networks may be controlled by distinct trans- 
cription factors and their combinations. Such diversity in the 
biological response of IFNs may further be influenced by the 
post-translational modification of the transcription factors 
and/or by the interaction of these transcription factors with 
other transcription factors (42). In this context, IFN-γ- 
induced gene expression requires diverse regulatory factors 
such as the IRFs (43-45), the class II transactivator, and the 
X-box binding factor (46, 47). One recent study reported a 
novel IFN-γ-activated-c-Jun-dependent pathway for the 
induction of a subset of ISGs, such as ifi-205 and iNOS (48). 
IFN-γ activated DNA binding of AP1, constituted by c-Jun, 
occurred independently of JAK1 and STAT1. This pathway 
engages the MEK1/2-ERK1/2 module of the MAP kinase 
cascades. Surprisingly, the JNK1/2 and p38 MAPK pathways 
were dispensable for activating AP1 in these studies (48).  

The IRF-9 protein plays a central role of IRF-9 in IFN- 
regulated pathways. IFN-γ augments IFN-α/β-induced gene 
expression via an up-regulation of the IRF-9 gene expression 
(49, 50). Certain oncogenic viruses down-regulate IRF-9 
expression to evade the action of IFNs (51, 52); and its 
activity is inhibited in some human tumor cell lines (53-55). 
Induction of IRF-9 occurs in a temporally delayed manner, in 
contrast to that of other IFN-stimulated genes (ISGs) and 
some IRFs (50, 56), indicating that its expression is regulated 
via a novel element(s). Therefore, we studied the regulation 
of IRF-9 gene by IFN-γ and discovered a novel γ-IFN- 
activated transcriptional element (GATE) in IRF-9 promoter 
(57). 

GATE was distinct from ISRE or GAS in terms of its 
sequence organization and bound to proteins, which were 
distinct from those bound to ISRE or GAS. GATE (24 bp) 
was also longer than ISRE (15 bp), and it exhibited a poor 
homology to ISRE or GAS. Similarly, other studies reported 
additional novel IFN response elements. For example, the 
MHC class I B gene promoter contains an atypical 
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Figure 1. IFN-induced JAK-STAT signaling pathways. 
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IFN-response element distinct from ISRE and GAS (58). The 
IFN-induced expression of a chemokine, RANTES, required 
an ISRE-like element, but none of the constituent proteins of 
the ISGF3 complex was required for gene induction through 
this element (59). An IFN response element from the 
IFP53/tryptophanyl tRNA synthase gene forms two distinct 
IFN-α-inducible complexes in an electrophoretic mobility 
shift assay (EMSA), one of which did not appear to be ISGF3 
(60). Although an ISRE of MHC class I genes is crucial for 
the induction of gene expression, studies have shown that 
another distinct element, site α, is also required for their 
induction by IFN-γ (61, 62). In summary, a number of other 
regulatory elements respond to IFN-treatment. Our 
subsequent analyses discovered that CAAAT/enhancer 
binding protein-β (C/EBP-β) as a GATE-binding factor 
played a prominent role in IFN-action (63). This observation 
was also verified by another independent study (64).  
 
Biology of C/EBP-β 
 
C/EBPs belong to a superfamily constituted by transcription 
factors CREB, Fos, Jun/activator protein-1 (AP1), activating 
transcription factor (ATF), and musculoaponeurotic fibro- 
sarcoma/nuclear factor E2-related factor (Maf/Nrf) (65). 
They participate in a number of physiologic activities, 
including energy metabolism, fat storage, tissue differentiation, 
hematopoiesis, immune responses, antibacterial defense, 
stress response, and the reproductive system (66-72). The 
C/EBP subfamily includes structurally similar but genetically 
and functionally distinct proteins - C/EBP-α, C/EBP-β, 
C/EBP-γ, C/EBP-δ, C/EBP-ε, and C/EBP-ζ. Most of these 
proteins possess a c-terminal bZIP domain (73, 74), which is 
essential for DNA binding; and homo- and hetero-dimeric 
interactions occur among various members of this family. 
Dimerization between different C/EBPs precisely modulates 
transcriptional activity of target genes (75). Their DNA 
binding specificity is determined by the DNA contact surface, 
the basic region of approximately 20 amino acids upstream 
of the leucine zipper (76). A less conserved, bi-partite 
transcription activation domain (TAD), located at the N- 
terminus, controls their transcriptional response. A 
constitutively high expression of C/EBP proteins is observed 
in human liver, intestine, lung, and adipose tissues. The 
pleiotropic transcriptional effects of C/EBP result from 

different mechanisms, such as their tissue and embryonic 
developmental stage-specific expression, leaky ribosomal 
reading, posttranscriptional modifications, and variable DNA 
binding specificities (77).  

Unlike the other members of its family, C/EBP-β (also 
known as - nuclear factor induced by IL-6 (NF-IL-6)/IL-6 
induced DNA binding protein (IL-6-DBP)/C-EBP related 
protein 2 (CRP2)/nuclear factor-myeloid (NF-M)) exhibits 
remarkable plasticity with respect to the range of 
transcriptional activities it takes part in. C/EBP-β has two 
central regulatory domains RD1 and RD2, which harbor sites 
that can be phosphorylated by several protein kinases (Figure 
2). C/EBP-β also regulates IL-6 and IL-6-induced expression 
of the cytokines IL-1, IL-8, tumor necrosis factor-α (TNF-α), 
and granulocyte colony-stimulating factor (G-CSF), as well 
acute phase response proteins such as α1-acid glycoprotein, 
α2-microglobulin, and C-reactive protein (69).  

Deletion of the C/EBP-β gene in mice causes death in 
utero, largely due to defective gluconeogenesis and 
adipogenesis (66). Rarely, some live pups are born, which 
develop severe defects in their immune system (70, 78). 
C/EBP-β-/- mice are highly susceptible to Candida albicans, 
Listeria monocytogenes, and Salmonella typhimurium 
infections (70, 78). These pathogens escape from the 
phagosome to the cytoplasm in C/EBP-β-/- macrophages (70, 
78). The Th1 immune deficiencies include low IL-12 levels 
and a loss of delayed-type hypersensitivity in C/EBP-β-/- 
mice (78). Elevated serum IL-6 levels in C/EBP-β-/- mice 
coincide with splenomegaly, peripheral lymphadenopathy, 
plasmacytosis, and extramedullary hematopoiesis, as seen in 
Castleman’s disease in humans (78). A number of defects in 
cytokine synthesis were also observed in C/EBP-β-/- 
macrophages (79). In the B cell lineage, C/EBP-γ  is the 
predominant isoform in early cells, and it decreases with 
cellular maturation. C/EBP-β is highly expressed in mature B 
cells and induced further by LPS stimulation and regulates 
the expression of a number of genes involved in B-cell 
function (80). The other long-term effects of C/EBP-β 
deficiency in mice include the development of a 
lymphoproliferative disorder (78) and female infertility (72). 
Loss of C/EBP-β in mice also causes defective development 
and differentiation of hepatocytes (81), myelomonocytes (82), 
adipocytes (67), and neurons (83). Given the diverse effects 
of C/EBP-β, it is conceivable that its association with 
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Figure 2. Molecular organization of the C/EBP-β protein. The ERK-phosphorylation site within the RD2 is shown. 
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different cellular factors in a gene context and signal-specific 
manner may regulate its activity. Indeed, C/EBP-β can 
interact with transcription factors outside its family, such as 
NF-κB (84), retinoblastoma (pRb) tumor suppressor protein 
(85), Sp1 (86), STAT3 (87) to regulate cellular functions. 
 
Regulation of C/EBP-β 
 
Two C/EBP-β isoforms are expressed physiologically. They 
are generated from a single mRNA by a leaky ribosomal 
scanning mechanism. While the full-length C/EBP-β protein 
(Figure 2) has a complete modular organization (88), the 
truncated isoform, LIP, contains only the DNA-binding and 
leucine zipper domains (89). LIP dominantly inhibits the 
transcriptional activity of the full-length C/EBP-β by 
dimerizing with it (89). C/EBP-ζ is inducible only under the 
conditions of stress. It can form heterodimers with C/EBP-α 
and C/EBP-β, and attenuate their transcriptional activity (90). 
LPS, IL-6, IL-1, dexamethasone, and glucagon can strongly 
up-regulate the expression of C/EBP-β (91). We have shown 
that IFN-γ not only induces the expression of C/EBP-β but 
also enhances its transcriptional activity (63). Cytokine 
treatment further increases the transcriptional activity of 
C/EBP via enhanced DNA binding (92). Posttranscriptional 
modifications of C/EBP by protein kinases PKA, PKC, 

ribosomal S6 kinase (RSK), and extracellular signal-related 
kinase (ERK) appear to modulate its activity in different cells 
(93-96).  

C/EBP-β binds to a variety of response elements and 
forms heteromeric complexes with other transcription factors, 
such as pRb, NF-κB, Sp1, Myb and PU.1 (85, 86, 97, 98). 
Indeed, synergistic activation by C/EBP-β and NF-κB 
members has been demonstrated for the genes encoding the 
acute-phase response proteins, serum amyloid A1, A2, A3, 
and α1-acid glycoprotein, as well as the cytokines IL-6, IL-8, 
and IL-12 and G-CSF (99-101). A cooperation between 
C/EBP-β and NF-κB has also been demonstrated in 
regulating transcription from the human immunodeficiency 
virus (HIV) long terminal repeat (102). In some instances, 
C/EBP-β and NF-κB interactions lead to antagonistic effects 
(84, 103), indicating that promoter organization and cell type 
specificities are likely to play a major role.  
 
C/EBP-β-dependent transcription in response to 
IFN-γ 
 
We have shown that C/EBP-β binds to GATE and stimulates 
transcription (63, 64). The b-Zip domain of C/EBP-β binds to 
a submotif within GATE. This motif exhibited homology 
with six of the eight conserved nucleotides of the consensus 
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Figure 3. A simplified view of the mitogen-activated protein kinase (MAPK) pathways. Three of the best studied modules, the ERK, JNK 
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C/EBP binding sites, found in a number of C/EBP-regulated 
genes (63, 64). C/EBP-β not only induces the basal 
transcription from GATE but also stimulates it further 
following IFN-γ treatment. In contrast, the other members of 
the C/EBP family, such as C/EBP-α, -δ and -ζ, fail to 
stimulate GATE-dependent transcription (63). In fact, 
C/EBP-δ and -ζ suppressed IFN-γ-induced transcription 
through GATE probably by forming heteromeric complexes 
with C/EBP-β to inhibit transcription.  

Similarly, IL-6 induces IRF-9 gene expression through 
GATE using C/EBP-β (104). Pretreatment with IL-6 
potnetiated IFN-α induced responses. This is consistent with 
previous reports that IL-6 induces the expression of 2-5A 
synthetase and MHC class I genes (105). Neutralization of 
endogenous IFN-α using specific antibodies blocked the 
gene stimulatory effects of IL-6. IFN-γ and IL-6 have also 
been shown to synergistically up-regulate the expression of 
HLA class I and carcinoembryonic antigen in certain 
colorectal carcinomas (106). The HLA inductive effects of 
IL-6 are mediated indirectly because antibodies against type I 
IFNs neutralize them. Such cooperative effects of IL-6 and 
IFN on the tumor cells may allow the expression of tumor 
specific antigens or HLA simultaneously. Such synergy may 
be one underlying reason for an effective rejection of the 
tumor in vivo. These studies show that C/EBP-β may 
function as a bridge between IFN and IL-6 signaling.  

Previous studies showed that mitogen-activated protein 
kinases (MAPKs) are activated by IFNs (107-109). The 
MAPK pathways (Figure 3) can be grossly grouped into two: 
one used by growth factors and the other by stress-activating 
signals (110, 111). In the growth factor-stimulated pathways, 
the Ras/Raf/MEK1/ERK cascade plays a key role in driving 
the responses. Ras activation is dependent on the recruitment 
of the adaptor proteins Grb and Sos to the growth factor 
receptors (112). Raf, a serine-threonine kinase, responds to 
Ras and phosphorylates MAP kinase kinase 1 (MEK1). 
MEK1, a dual specificity kinase, phosphorylates at the 
conserved threonine and tyrosine residues present in the 
activation loop of ERKs: ERK1 (p44) and ERK2 (p42). 
ERKs1/2 are known to phosphorylate members of the AP1 
family, such as Elk1, Egr1, Fos, and Jun. The second type of 
MAPK pathway is initiated by stress-activating stimuli, such 
as IL-1, TNF-α, UV radiation and others. Rho and Rac, the G 
proteins similar to Ras, are activated first (113). These 
G-proteins then activate MAP kinase kinase kinases (MEKKs) 
1-4. MEKKs then activate stress responsive kinases, such as 
the various isoforms of p38 MAPK (α, β, γ, δ) and c-Jun 
N-terminal kinases (JNK), using the intermediate enzymes 
SEK1/2. In these pathways, MEKKs and SEKs are 
equivalent to Raf and MEK1 of the growth factor induced 
pathways, respectively.  

Although Raf activation by IFN-γ and IFN-β has been 
reported (107, 109), neither the catalytically inactive 
dominant negative Ras or Raf mutant, nor the loss of Raf in 
cells failed to block GATE-dependent transcription (114, 
115). However, the inhibitors of ERK1/2 activation, 
PD98059 and U0126 (116); dominant negative forms of 

ERK1/2; and a catalytically inactive MEK1 potently ablated 
GATE-driven expression. C/EBP-β bears a consensus ERK 
phosphorylation site, GTPS, in its RD2 domain. A C/EBP-β 
mutant lacking the critical threonine residue (in the GTPS 
sequence) failed to promote GATE-dependent gene 
expression. These data indicate that C/EBP-β is regulated by 
ERK1/2, through MEK1, in response to IFN-γ.  

Instead of Raf, MEKK1 was required for IFN-γ-induced 
ERK activation and the induction IRF-9 gene (115). 
Interestingly, IFN-γ-induced GAS-driven transcription was 
also inhibited in MEKK1-/- cells. Further analyses showed 
that GATE-driven transcription was inhibited by U0126 (an 
inhibitor of ERK1/2 pathway), whereas GAS-driven 
transcription was suppressed by SB202190 (an inhibitor of 
p38 MAPKs). These data indicate that MEKK1 acts as a 
common upstream effector for GAS- and GATE-dependent 
transcriptional responses. However, these signals seem to 
diverge thereafter. These results clearly differ from the 
existing paradigms wherein Raf1 is considered to be the 
upstream regulator of MEK1 and, therefore, ERK1/2. 

Although the N-terminal half (367 amino acids) of the 
MEKK1 protein is dispensable for its catalytic activity 
(117-119), its deletion converts it into a constitutive enzyme.  
This domain acts as a scaffold for the binding of MEK1 and 
ERK1/2 (120), which permits the juxtaposition of the kinases 
and their activation. In fact, MEKK1 phosphorylates MEK1 
on the same residue as does Raf (121). Thus, IFN-γ is the 
first known ligand to employ the MEKK1-MEK1-ERK1/2 
signaling pathway to stimulate transcription using C/EBP-β. 
MEKK1 is also required for the activation of NF-κB (122, 
123) and c-Jun N-terminal kinases (124). It also plays a 
major role in IFN-β gene induction (125), and double- 
stranded RNA-dependent responses (124). Thus, MEKK1 
appears to play a broader role in innate immune responses 
that involve IFNs.  

One consequence of ERK-induced phosphorylation at the 
GTPS motif of C/EBP-β is a conformational change that 
permits its interaction with other cellular proteins. One recent 
study showed that Ras induces phosphorylation of C/EBP-β 
and activated C/EBP-β interacts with the transcriptional 
mediator complex (126). GATE also binds another 
transcriptional activator, GBF1, in response to IFN-γ (127). 
However, it is an extremely poor DNA-binding protein. Our 
subsequent studies have shown that GBF1 recruitment to the 
IRF-9 promoter is dependent on C/EBP-β (128). Specifically, 
ERK1/2-dependent phosphorylation at T189 residue in the 
GTPS motif played a critical role. Mutation of this motif 
and/or interference with the ERK1/2 activation prevented the 
IFN-γ-induced association between GBF1 and C/EBP-β.  

STAT1 is another important factor that controls 
IFN-γ-induced activation of ERKs. In the absence of STAT1, 
IFN-γ failed to promote activation of ERKs (114). 
Restoration of STAT1 into STAT1-/- cells rescued ERK1/2 
activation. It is unlikely that STAT1 directly controls ERK 
activation. Rather, an unknown STAT1-dependent factor may 
regulate such a process. Although another study showed that 
Raf1 activation was JAK1-dependent (implying that ERK1/2 
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activation was also JAK1 dependent) and Ras-independent 
(108), we found that ERK1/2 were activated normally by 
IFN-γ in the absence of JAK1 (114). At present, we do not 
know the significance of Raf activation by IFNs. It is likely 
that such activation may be important for the stimulation of 
another transcription factor(s). It may also represent a cell 
type-specific effect of IFN-γ. With respect to GATE- 
dependent C/EBP-β-driven transcription, Ras and Raf are not 
required.  

So, the question comes up what are the upstream 
effectors of this pathway? One of the effectors could possibly 
be Ras GTPase-activating protein 1 (RAP1), a ras like small 
GTPase (129). It is known that activation of MEKK1 or 
MEK1 usually occurs downstream of small GTPases (31). 
The function of small GTPases is regulated by guanine- 
nucleotide-exchange factors (GEFs). The GEF for RAP1, a 
G-protein-linked signaling molecules C3G, is linked by an 
adaptor protein CrkL (130). Studies showed that CRKL is 
tyrosine phosphorylated during IFN-treatment (131). It also 
has been shown that RAP1 regulates the activation of 
MAPK-signaling cascades (129, 132) in response to IFN. 
However, the precise mechanism that CrkL-RAP1 mediates 
IFN responses remains to be determined. 
 
The role of mixed lineage kinases (MLK) in 
IFN-γ-induced C/EBP-β-dependent 
transcriptional response 
 
Our recent studies show that mixed-lineage kinases (MLKs), 
a group of orphan MAPKs, also control another aspect of 
GATE-dependent gene regulation. MLKs are a subgroup of 
upstream kinases that regulate the MAPK signaling (133). 
The MLK family includes MLKs 1-4, the dual leucine 
zipper-bearing kinase (DLK), and the leucine zipper kinase 

(LZK). These kinases are sub-grouped based on the spacer 
motifs that divide two characteristic leucine zippers (Figure 
4). Kinases in the MLK and DLK have a 13- and 31-amino 
acid spacers, respectively. The other difference between these 
proteins is the location of their catalytic domains. 

MLKs contain several conserved structural motifs that 
are important for their function. These include a Src 
homology 3 (SH3) domain, two leucine zipper motifs, and a 
Cdc42/Rac interactive binding domain (CRIB). Signal- 
induced binding of Cdc42/Rac to the CRIB causes MLK 
dimerization, leading to their autophosphorylation (134). In 
the case of MLK3, autophosphorylation occurs at amino 
acids 277 and 281 of the activation loop, located in its 
catalytic domain (135). MLKs function as MKKKs and have 
been implicated in the activation of JNK and SEK1 and 
transcription factor NF-κB (136, 137). Some MLKs also 
activate p38-MAPK (133). One well-recognized function for 
the MLKs is regulation of apoptotic pathways in neuronal 
cells (138, 139). MLKs are expressed in a tissue-specific 
manner, with the exception of MLK3. Their role in regulation 
of neurodegeneration has been indicated by the observation 
that K252a, a metabolite found in the spent broths of the 
bacterium Narcodiopsis sp., can inhibit these kinases and 
prevent experimentally induced neurodegeneration in animal 
models (140). 

We investigated the role of MLKs in IFN-γ-driven 
transcriptional responses through GATE/C/EBP-β (141). We 
observed that co-expression of MLK3, but not MLK2, 
significantly stimulated the IFN-γ-induced expression of 
IRF-9. Inhibition of MLKs did not significantly affect 
STAT1-driven and AP1-driven transcription. The fact that 
MLK-inhibitor CEP-11004 (an analog of K252a) inhibited 
neither the IFN-induced activation of ERK1/2 nor the 
phosphorylation of C/EBP-β at T189 indicated that MLK 
effects are exerted elsewhere on C/EBP-β. Indeed, 
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constitutively phosphorylated serine residue (S64) in the 
transactivation domain of C/EBP-β was the target of MLK3- 
induced signals. IFN-γ treatment decreased S64 phosphorylation. 
Surprisingly, MLK3 caused a decrease in phosphorylation of 
C/EBP-β instead of its stimulation in an IFN-γ dependent 
manner. This observation suggests the requirement for a 
ligand-induced dephosphorylating activity to regulate GATE- 
driven transcription. Such dephosphorylation was required 
for the IFN-γ-induced recruitment of the transcriptional 
coactivator p300 to the IRF-9 promoter. Thus, IFN-induced 
GATE-driven transcription is dependent on MLK3 activity, 
which promotes a decrease in S64 phosphorylation on 
C/EBP-β.  

Dephosphorylation plays a major role in other 
transcriptional events. For example, dephosphorylation of 
transcription factor NFAT by calcineurin (142) and 
homeodomain transcription factor Arix (143) have been 
shown to promote their transcription-activating function. The 
nature of the MLK3-driven dephosphorylating activity is 
unclear at present. Although we suggest a role for 
phosphatase in this process, our observations can also be 
explained by a MLK3-driven inactivation of a kinase that 
constitutively phosphorylates S64. One likely candidate is 
Cdk2, which phosphorylates C/EBP-β in vitro at S64 and T189 

(144). IFN-γ treatment has been shown to cause a decrease in 
Cdk2 activity (145). One study showed that protein 
phosphatase PP2A activity was required for the IFN-γ- 
induced expression of the C1 inhibitor mRNA (146). It is 
unclear whether this phosphatase has any effect on S64 
phosphorylation. Thus, further studies are needed to identify 
the relevant activity in this response.  

One implication from these results is that signal- 
dependent phosphorylation (for growth promoters, such as 
Ras) and dephosphorylation (for growth inhibitors, such as 
IFN-γ) at S64 may act as a regulatory switch for routing 
C/EBP-β into specific promoter complexes. A post-induction 
re-phosphorylation at S64 following IFN-γ treatment may 
then reset this transcriptional switch. Consistent with our 
interpretation, cell cycle-dependent dual phosphorylation of 
C/EBP-β at S64 and T189 by Cdc2 or Cdk2 controls its 
activation by Ras signaling (144). In contrast, MEKK1 and 
MLK3 control the phosphorylation at these sites in response 
to IFN-γ. These results may also explain why IFN-γ 
circumvents Ras to activate ERK1/2 and, therefore, C/EBP-β 
(115). Otherwise, S64 might remain constitutively 
phosphorylated and would be unable to activate GATE- 
dependent transcription. 

The IFN-γ-induced decrease in phosphorylation of S64 
seems to occur independently of the ERK consensus motif 
present in RD2 of C/EBP-β. This conclusion is supported by 
three observations: (1) in cells lacking MEKK1, a normal 
dephosphorylation of S64 occurred in response to IFN-γ; (2) a 
C/EBP-β mutant lacking the ERK phosphorylation motif was 
dephosphorylated following IFN-γ treatment; and (3) CEP 
did not block the IFN-induced phosphorylation at T189 of 
C/EBP-β. These observations also rule out a potential 
IFN-γ-induced cascade-like relationship between MEKK1 
and MLK3-driven signals. However, it is possible that these 
events can be coordinately regulated. Based on these results, 
we suggest that C/EBP-β is controlled by at least two 
independent IFN-γ-driven signaling pathways: one that 
promotes the phosphorylation at T189 through an MEKK1- 
MEK1-ERK1/2 cascade and the other that decreases 
phosphorylation at the S64 residue of the N-terminus through 
MLK3 (Figure 5).  
 
Conclusions 
 
IFN-induced transcriptional control involves a multilayered 
and cross-regulating network. There is accumulating 
evidence that these signaling pathways may extend beyond 
the classical JAK-STAT pathways. The identification of 
GATE and C/EBP-β as its regulatory factor has uncovered 
hitherto undefined new regulatory processes controlled by 
IFNs. Such a highly synergistic and coordinate system 
provides an effective host defense against different pathogens 
and tumors. IFN-γ, using C/EBP-β, induces IRF-9 (63). 
IRF-9, in turn, promotes IFN-α/β responses (147). IFN-α/β 
and IFN-γ induce C/EBP-β (148). Some of this C/EBP-β is 
used for increasing IRF-9 synthesis in a positive feedback 
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Figure 5. The IFN-γ-induced MAPK-signaling pathways regulate
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loop. A fraction of the C/EBP-β also participates in IL-6-, 
IL-1- and TNF-α-induced responses (68, 69). IL-6 also 
promotes IFN-α/β-inducible responses through C/EBP-β 
(104). IL-1 and TNF-α induce the synthesis of type I IFN, 
potentially amplifying this loop. IRF-9 also participates in 
IFN-β synthesis (149) in response to TNF-α (150). Thus, 
C/EBP-β connects multiple cytokine signaling pathways. 

We have identified two C/EBP-β-dependent signaling 
pathways in response to IFN-γ. Both of them control the 
phosphorylation of C/EBP-β. At present, we only have a 
partial picture of the regulation of C/EBP-β by IFN-γ. It is 
unclear as to what and how specific regulatory proteins get 
recruited into the promoter complexes in response to IFN-γ 
and whether these factors are also subject to regulation by 
IFNs. IFN-induced control of C/EBP-β by more than one 
signal may recruit multi-proteins into specific transcriptional 
complexes. For example, the transcription coactivator, 
CBP/p300, is known to undergo phosphorylation at multiple 
sites (151-153) following its engagement with C/EBP-β (154, 
155). Some proteins in the transcriptional mediator complex 
themselves appear to be targets for phosphorylation (126, 
156). Whether IFNs or other cytokines control these events 
need further studies. Another important question is whether 
other genes are controlled by the IFN-γ-C/EBP-β regulatory 
pathways. In this connection, we have recently identified that 
~30 genes are dependent on this pathway for their expression 
(Gade P, et al., manuscript submitted). One such gene is the 
death-associated protein kinase, a protein required for 
suppressing metastasis (157, 158). The answers to these 
questions will provide us further insights about IFNs induced 
anti-tumor, antiviral and immunomodulatory effects. 
 
Acknowledgements 
 
DVK is supported by National Cancer Institute grant 
CA78282. We thank Shreeram Nallar for a critical reading of 
this manuscript.  
 
References 
 

1. Kalvakolanu DV, Borden EC. Interferons: cellular and 
molecular biology of their actions. In: Bertion JR, ed. 
Encyclopedia Cancer. 2002;2:511-521. 

2. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. 
How cells respond to Interferons. Annu Rev Biochem. 1998; 
67:227-264. 

3. Biron CA. Initial and innate responses to viral infections- 
pattern setting in immunity or disease. Curr Opin Microbiol. 
1999;2:374-381. 

4. Williams BR. Signal integration via PKR. Sci STKE. 2001; 
2001:RE2. 

5. Silverman R. 2-5A Dependent RNase L: a regulated 
endoribonuclease in the interferon system. In: D'Alessio GRJ, 
ed. Rionucleases: Structure and Functions; 1997:515-551. 

6. Nyman TA, Matikainen S, Sareneva T, Julkunen I, Kalkkinen N. 
Proteome analysis reveals ubiquitin-conjugating enzymes to be 
a new family of interferon-α-regulated genes. Eur J Biochem. 
2000;267:4011-4019. 

7. Taniguchi T, Ogasawara K, Takaoka A, Tanaka N. IRF family of 
transcription factors as regulators of host defense. Annu Rev 
Immunol. 2001;19:623-655. 

8. Enninga J, Levy DE, Blobel G, Fontoura BM. Role of 
nucleoporin induction in releasing an mRNA nuclear export 
block. Science. 2002;295:1523-1525. 

9. Takayanagi H, Kim S, Matsuo K, et al. RANKL maintains bone 
homeostasis through c-Fos-dependent induction of interferon-β. 
Nature. 2002;416:744-749. 

10. Horiuchi M, Hayashida W, Akishita M, et al. Interferon-γ 
induces AT(2) receptor expression in fibroblasts by Jak/STAT 
pathway and interferon regulatory factor-1. Circ Res. 2000;86: 
233-240. 

11. Kalvakolanu DV. The GRIMs: a new interface between cell 
death regulation and interferon/retinoid induced growth 
suppression. Cytokine Growth Factor Rev. 2004;15:169-194. 

12. Levy-Strumpf N, Kimchi A. Death-associated proteins (DAPs): 
from gene identification to the analysis of their apoptotic and 
turmor suppressive functions. Oncogene. 1998;17:3331-3340. 

13. Pestka S, Krause CD, Walter MR. Interferons, interferon-like 
cytokines, and their receptors. Immunol Rev. 2004;202:8-32. 

14. de Weerd NA, Samarajiwa SA, Hertzog PJ. Type I interferon 
receptors: biochemistry and biological functions. J Biol Chem. 
2007;282:20053-20057. 

15. Pestka S. The interferons: 50 years after their discovery, there is 
much more to learn. J Biol Chem. 2007;282:20047-20051. 

16. Kotenko SV, Gallagher G, Baurin VV, et al. IFN-λs mediate 
antiviral protection through a distinct class II cytokine receptor 
complex. Nat Immunol. 2003;4:69-77. 

17. Uze G, Monneron D. IL-28 and IL-29: newcomers to the 
interferon family. Biochimie. 2007;89:729-734. 

18. Leung S, Qureshi SA, Kerr IM, Darnell JE, Jr., Stark GR. Role 
of STAT2 in the α interferon signaling pathway. Mol Cell Biol. 
1995;15:1312-1317. 

19. Darnell JE, Jr. Studies of IFN-induced transcriptional activation 
uncover the Jak-Stat pathway. J Interferon Cytokine Res. 
1998;18:549-554. 

20. Pfeffer LM, Mullersman JE, Pfeffer SR, Murti A, Shi W, Yang 
CH. STAT3 as an adapter to couple phosphatidylinositol 
3-kinase to the IFNAR1 chain of the type I interferon receptor. 
Science. 1997;276:1418-1420. 

21. Yang CH, Murti A, Pfeffer LM. STAT3 complements defects in 
an interferon-resistant cell line: evidence for an essential role for 
STAT3 in interferon signaling and biological activities. Proc 
Natl Acad Sci U S A. 1998;95:5568-5572. 

22. Veals SA, Santa Maria T, Levy DE. Two domains of ISGF3 γ 
that mediate protein-DNA and protein-protein interactions 
during transcription factor assembly contribute to DNA-binding 
specificity. Mol Cell Biol. 1993;13:196-206. 

23. Shuai K, Stark GR, Kerr IM, Darnell JE, Jr. A single 
phosphotyrosine residue of Stat91 required for gene activation 
by interferon-γ. Science. 1993;261:1744-1746. 

24. Dumoutier L, Tounsi A, Michiels T, Sommereyns C, Kotenko 
SV, Renauld JC. Role of the interleukin (IL)-28 receptor 
tyrosine residues for antiviral and antiproliferative activity of 
IL-29/interferon-λ1: similarities with type I interferon signaling. 
J Biol Chem. 2004;279:32269-32274. 

25. McBride KM, McDonald C, Reich NC. Nuclear export signal 
located within theDNA-binding domain of the STAT1 
transcription factor. EMBO J. 2000;19:6196-6206. 

26. McBride KM, Reich NC. The ins and outs of STAT1 nuclear 
transport. Sci STKE. 2003;2003:RE13. 

27. Marg A, Shan Y, Meyer T, Meissner T, Brandenburg M, 
Vinkemeier U. Nucleocytoplasmic shuttling by nucleoporins 



Cellular & Molecular Immunology                                                                                 415 

Volume 4  Number 6  December 2007 

Nup153 and Nup214 and CRM1-dependent nuclear export 
control the subcellular distribution of latent Stat1. J Cell Biol. 
2004;165:823-833. 

28. ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, et al. 
Identification of a nuclear Stat1 protein tyrosine phosphatase. 
Mol Cell Biol. 2002;22:5662-5668. 

29. Alexander WS, Starr R, Fenner JE, et al. SOCS1 is a critical 
inhibitor of interferon γ signaling and prevents the potentially 
fatal neonatal actions of this cytokine. Cell. 1999;98:597-608. 

30. Ramana CV, Gil MP, Schreiber RD, Stark GR. Stat1-dependent 
and -independent pathways in IFN-γ-dependent signaling. 
Trends Immunol. 2002;23:96-101. 

31. Platanias LC. Mechanisms of type-I- and type-II-interferon- 
mediated signalling. Nat Rev Immunol. 2005;5:375-386. 

32. Uddin S, Lekmine F, Sharma N, et al. The Rac1/p38 mitogen- 
activated protein kinase pathway is required for interferon α- 
dependent transcriptional activation but not serine 
phosphorylation of Stat proteins. J Biol Chem. 2000;275: 
27634-27640. 

33. Goh KC, Haque SJ, Williams BR. p38 MAP kinase is required 
for STAT1 serine phosphorylation and transcriptional activation 
induced by interferons. EMBO J. 1999;18:5601-5608. 

34. Uddin S, Majchrzak B, Woodson J, et al. Activation of the p38 
mitogen-activated protein kinase by type I interferons. J Biol 
Chem. 1999;274:30127-30131. 

35. Uddin S, Yenush L, Sun XJ, Sweet ME, White MF, Platanias LC. 
Interferon-α engages the insulin receptor substrate-1 to 
associate with the phosphatidylinositol 3'-kinase. J Biol Chem. 
1995;270:15938-15941. 

36. Uddin S, Fish EN, Sher D, et al. The IRS-pathway operates 
distinctively from the Stat-pathway in hematopoietic cells and 
transduces common and distinct signals during engagement of 
the insulin or interferon-α receptors. Blood. 1997;90:2574- 
2582. 

37. Uddin S, Majchrzak B, Wang PC, et al. Interferon-dependent 
activation of the serine kinase PI 3'-kinase requires engagement 
of the IRS pathway but not the Stat pathway. Biochem Biophys 
Res Commun. 2000;270:158-162. 

38. Friedman RL, Stark GR. α-Interferon-induced transcription of 
HLA and metallothionein genes containing homologous 
upstream sequences. Nature. 1985;314:637-639. 

39. Sen GC, Ransohoff RM. Transcriptional regulation in the 
interferon system. Austin, TX: Chapman & Hall and Landes 
Bioscience; 1997. 

40. Decker T, Lew DJ, Mirkovitch J, Darnell JE, Jr. Cytoplasmic 
activation of GAF, an IFN-γ-regulated DNA-binding factor. 
EMBO J. 1991;10:927-932. 

41. Kanno Y, Kozak CA, Schindler C, et al. The genomic structure 
of the murine ICSBP gene reveals the presence of the γ 
interferon-responsive element, to which an ISGF3 α subunit (or 
similar) molecule binds. Mol Cell Biol. 1993;13:3951-3963. 

42. Tjian R, Maniatis T. Transcriptional activation: a complex 
puzzle with few easy pieces. Cell. 1994;77:5-8. 

43. Tamura T, Nagamura-Inoue T, Shmeltzer Z, Kuwata T, Ozato K. 
ICSBP directs bipotential myeloid progenitor cells to 
differentiate into mature macrophages. Immunity. 2000;13:155- 
165. 

44. Kamijo R, Harada H, Matsuyama T, et al. Requirement for 
transcription factor IRF-1 in NO synthase induction in 
macrophages. Science. 1994;263:1612-1615. 

45. Briken V, Ruffner H, Schultz U, et al. Interferon regulatory 
factor 1 is required for mouse Gbp gene activation by γ 
interferon. Mol Cell Biol. 1995;15:975-982. 

46. Ting JP, Trowsdale J. Genetic control of MHC class II 

expression. Cell. 2002;109 Suppl:S21-33. 
47. Reith W, Mach B. The bare lymphocyte syndrome and the 

regulation of MHC expression. Annu Rev Immunol. 2001; 
19:331-373. 

48. Gough DJ, Sabapathy K, Ko EY, et al. A novel c-Jun-dependent 
signal transduction pathway necessary for the transcriptional 
activation of interferon γ response genes. J Biol Chem. 2007; 
282:938-946. 

49. Lewis JA, Huq A, Shan B. β and γ interferons act synergistically 
to produce an antiviral state in cells resistant to both interferons 
individually. J Virol. 1989;63:4569-4578. 

50. Bandyopadhyay SK, Kalvakolanu DV, Sen GC. Gene induction 
by interferons: functional complementation between trans- 
acting factors induced by α interferon and γ interferon. Mol Cell 
Biol. 1990;10:5055-5063. 

51. Kalvakolanu DV. Virus interception of cytokine-regulated 
pathways. Trends Microbiol. 1999;7:166-171. 

52. Barnard P, McMillan NA. The human papillomavirus E7 
oncoprotein abrogates signaling mediated by interferon-α. 
Virology. 1999;259:305-313. 

53. Wong LH, Krauer KG, Hatzinisiriou I, et al. Interferon-resistant 
human melanoma cells are deficient in ISGF3 components, 
STAT1, STAT2, and p48-ISGF3γ. J Biol Chem. 1997;272: 
28779-28785. 

54. Clifford JL, Walch E, Yang X, et al. Suppression of type I 
interferon signaling proteins is an early event in squamous skin 
carcinogenesis. Clin Cancer Res. 2002;8:2067-2072. 

55. Wu WZ, Sun HC, Gao YQ, et al. Reduction in p48-ISGFγ levels 
confers resistance to interferon-α2a in MHCC97 cells. 
Oncology. 2004;67:428-440. 

56. Levy DE, Lew DJ, Decker T, Kessler DS, Darnell JEJ. 
Synergistic interaction between interferon-α and interferon-γ 
through induced synthesis of one subunit of the transcription 
factor ISGF3. EMBO J. 1990;9:1105-1111. 

57. Weihua X, Kolla V, Kalvakolanu DV. Interferon γ-induced 
transcription of the murine ISGF3γ (p48) gene is mediated by 
novel factors. Proc Natl Acad Sci U S A. 1997;94:103-108. 

58. Vallejo AN, Pease LR. The locus-specific enhancer activity of 
the class I major histocompatibility complex interferon- 
responsive element is associated with a γ-interferon (IFN)- 
inducible factor distinct from STAT1α, p48, and IFN regulatory 
factor-1. J Biol Chem. 1996;271:29813-29821. 

59. Cremer I, Ghysdael J, Vieillard V. A non-classical ISRE/ISGF3 
pathway mediates induction of RANTES gene transcription by 
type I IFNs. FEBS Lett. 2002;511:41-45. 

60. Lehmann J, Seegert D, Strehlow I, Schindler C, Lohmann- 
Matthes ML, Decker T. IL-10-induced factors belonging to the 
p91 family of proteins bind to IFN-γ-responsive promoter 
elements. J Immunol. 1994;153:165-172. 

61. Gobin SJ, Peijnenburg A, Keijsers V, van den Elsen PJ. Site α is 
crucial for two routes of IFN γ-induced MHC class I 
transactivation: the ISRE-mediated route and a novel pathway 
involving CIITA. Immunity. 1997;6:601-611. 

62. Martin BK, Chin KC, Olsen JC, et al. Induction of MHC class I 
expression by the MHC class II transactivator CIITA. Immunity. 
1997;6:591-600. 

63. Roy SK, Wachira SJ, Weihua X, Hu J, Kalvakolanu DV. 
CCAAT/enhancer-binding protein-β regulates interferon- 
induced transcription through a novel element. J Biol Chem. 
2000;275:12626-12632. 

64. Xiao W, Wang L, Yang X, et al. CCAAT/enhancer-binding 
protein β mediates interferon-γ-induced p48 (ISGF3-γ) gene 
transcription in human monocytic cells. J Biol Chem. 2001;276: 



416                                                   The Interferon Signaling Network and Transcription Factor C/EBP-β 

Volume 4  Number 6  December 2007 

23275-23281. 
65. Kalvakolanu DV. Alternate interferon signaling pathways. 

Pharmacol Ther. 2003;100:1-29. 
66. Croniger C, Trus M, Lysek-Stupp K, et al. Role of the isoforms 

of CCAAT/enhancer-binding protein in the initiation of 
phosphoenolpyruvate carboxykinase (GTP) gene transcription at 
birth. J Biol Chem. 1997;272:26306-26312. 

67. Darlington GJ, Ross SE, MacDougald OA. The role of C/EBP 
genes in adipocyte differentiation. J Biol Chem. 1998;273: 
30057-30060. 

68. Poli V. The role of C/EBP isoforms in the control of 
inflammatory and native immunity functions. J Biol Chem. 
1998;273:29279-29282. 

69. Akira S, Kishimoto T. NF-IL6 and NF-κB in cytokine gene 
regulation. Adv Immunol. 1997;65:1-46. 

70. Tanaka T, Akira S, Yoshida K, et al. Targeted disruption of the 
NF-IL6 gene discloses its essential role in bacteria killing and 
tumor cytotoxicity by macrophages. Cell. 1995;80:353-361. 

71. Wang XZ, Lawson B, Brewer JW, et al. Signals from the 
stressed endoplasmic reticulum induce C/EBP-homologous 
protein (CHOP/GADD153). Mol Cell Biol. 1996;16:4273-4280. 

72. Sterneck E, Tessarollo L, Johnson PF. An essential role for 
C/EBPβ in female reproduction. Genes Dev. 1997;11:2153- 
2162. 

73. Landschulz WH, Johnson PF, McKnight SL. The leucine zipper: 
a hypothetical structure common to a new class of DNA binding 
proteins. Science. 1988;240:1759-1764. 

74. Williams SC, Baer M, Dillner AJ, Johnson PF. CRP2 (C/EBP β) 
contains a bipartite regulatory domain that controls 
transcriptional activation, DNA binding and cell specificity. 
EMBO J. 1995;14:3170-3183. 

75. Williams SC, Cantwell CA, Johnson PF. A family of 
C/EBP-related proteins capable of forming covalently linked 
leucine zipper dimers in vitro. Genes Dev. 1991;5:1553-1567. 

76. Agre P, Johnson PF, McKnight SL. Cognate DNA binding 
specificity retained after leucine zipper exchange between 
GCN4 and C/EBP. Science. 1989;246:922-926. 

77. Lekstrom-Himes J, Xanthopoulos KG. Biological role of the 
CCAAT/enhancer-binding protein family of transcription factors. 
J Biol Chem. 1998;273:28545-28548. 

78. Screpanti I, Romani L, Musiani P, et al. Lymphoproliferative 
disorder and imbalanced T-helper response in C/EBP β-deficient 
mice. EMBO J. 1995;14:1932-1941. 

79. Gorgoni B, Maritano D, Marthyn P, Righi M, Poli V. C/EBP β 
gene inactivation causes both impaired and enhanced gene 
expression and inverse regulation of IL-12 p40 and p35 mRNAs 
in macrophages. J Immunol. 2002;168:4055-4062. 

80. Cooper CL, Berrier AL, Roman C, Calame KL. Limited 
expression of C/EBP family proteins during B lymphocyte 
development. Negative regulator Ig/EBP predominates early and 
activator NF-IL-6 is induced later. J Immunol. 1994;153:5049- 
5058. 

81. Diehl AM. Roles of CCAAT/enhancer-binding proteins in 
regulation of liver regenerative growth. J Biol Chem. 1998;273: 
30843-30846. 

82. Natsuka S, Akira S, Nishio Y, et al. Macrophage differentiation- 
specific expression of NF-IL6, a transcription factor for 
interleukin-6. Blood. 1992;79:460-466. 

83. Taubenfeld SM, Milekic MH, Monti B, Alberini CM. The 
consolidation of new but not reactivated memory requires 
hippocampal C/EBPβ. Nat Neurosci. 2001;4:813-818. 

84. Stein B, Cogswell PC, Baldwin AS, Jr. Functional and physical 
associations between NF-κB and C/EBP family members: a Rel 
domain-bZIP interaction. Mol Cell Biol. 1993;13:3964-3974. 

85. Chen PL, Riley DJ, Chen-Kiang S, Lee WH. Retinoblastoma 
protein directly interacts with and activates the transcription 
factor NF-IL6. Proc Natl Acad Sci U S A. 1996;93:465-469. 

86. Lee YH, Williams SC, Baer M, Sterneck E, Gonzalez FJ, 
Johnson PF. The ability of C/EBP β but not C/EBP α to 
synergize with an Sp1 protein is specified by the leucine zipper 
and activation domain. Mol Cell Biol. 1997;17:2038-2047. 

87. Alonzi T, Maritano D, Gorgoni B, Rizzuto G, Libert C, Poli V. 
Essential role of STAT3 in the control of the acute-phase 
response as revealed by inducible gene inactivation [correction 
of activation] in the liver. Mol Cell Biol. 2001;21:1621-1632. 

88. Descombes P, Chojkier M, Lichtsteiner S, Falvey E, Schibler U. 
LAP, a novel member of the C/EBP gene family, encodes a 
liver-enriched transcriptional activator protein. Genes Dev. 
1990;4:1541-1551. 

89. Descombes P, Schibler U. A liver-enriched transcriptional 
activator protein, LAP, and a transcriptional inhibitory protein, 
LIP, are translated from the same mRNA. Cell. 1991;67:569-579. 

90. Ron D, Habener JF. CHOP, a novel developmentally regulated 
nuclear protein that dimerizes with transcription factors C/EBP 
and LAP and functions as a dominant-negative inhibitor of gene 
transcription. Genes Dev. 1992;6:439-453. 

91. Akira S, Isshiki H, Sugita T, et al. A nuclear factor for IL-6 
expression (NF-IL6) is a member of a C/EBP family. EMBO J. 
1990;9:1897-1906. 

92. Poli V, Mancini FP, Cortese R. IL-6DBP, a nuclear protein 
involved in interleukin-6 signal transduction, defines a new 
family of leucine zipper proteins related to C/EBP. Cell. 
1990;63:643-653. 

93. Trautwein C, Caelles C, van der Geer P, Hunter T, Karin M, 
Chojkier M. Transactivation by NF-IL6/LAP is enhanced by 
phosphorylation of its activation domain. Nature. 1993;364: 
544-547. 

94. Nakajima T, Kinoshita S, Sasagawa T, et al. Phosphorylation at 
threonine-235 by a ras-dependent mitogen-activated protein 
kinase cascade is essential for transcription factor NF-IL6. Proc 
Natl Acad Sci U S A. 1993;90:2207-2211. 

95. Buck M, Poli V, van der Geer P, Chojkier M, Hunter T. 
Phosphorylation of rat serine 105 or mouse threonine 217 in 
C/EBP β is required for hepatocyte proliferation induced by 
TGF α. Mol Cell. 1999;4:1087-1092. 

96. Buck M, Poli V, Hunter T, Chojkier M. C/EBP-β 
phosphorylation by RSK creates a functional XEXD caspase 
inhibitory box critical for cell survival. Mol Cell. 2001; 
8:807-816. 

97. Shimizu H, Yamamoto K. NF-κB and C/EBP transcription 
factor families synergistically function in mouse serum amyloid 
A gene expression induced by inflammatory cytokines. Gene. 
1994;149:305-310. 

98. Oelgeschlager M, Nuchprayoon I, Luscher B, Friedman AD. 
C/EBP, c-Myb, and PU.1 cooperate to regulate the neutrophil 
elastase promoter. Mol Cell Biol. 1996;16:4717-4725. 

99. Ray A, Hannink M, Ray BK. Concerted participation of NF-κB 
and C/EBP heteromer in lipopolysaccharide induction of serum 
amyloid A gene expression in liver. J Biol Chem. 1995;270: 
7365-7374. 

100. Plevy SE, Gemberling JH, Hsu S, Dorner AJ, Smale ST. 
Multiple control elements mediate activation of the murine and 
human interleukin 12 p40 promoters: evidence of functional 
synergy between C/EBP and Rel proteins. Mol Cell Biol. 
1997;17:4572-4588. 

101. Lee YM, Miau LH, Chang CJ, Lee SC. Transcriptional 
induction of the α-1 acid glycoprotein (AGP) gene by 
synergistic interaction of two alternative activator forms of 



Cellular & Molecular Immunology                                                                                 417 

Volume 4  Number 6  December 2007 

AGP/enhancer-binding protein (C/EBP β) and NF-κB or 
Nopp140. Mol Cell Biol. 1996;16:4257-4263. 

102. Ruocco MR, Chen X, Ambrosino C, et al. Regulation of HIV-1 
long terminal repeats by interaction of C/EBP(NF-IL6) and 
NF-κB/Rel transcription factors. J Biol Chem. 1996;271:22479- 
22486. 

103. Brasier AR, Ron D, Tate JE, Habener JF. A family of 
constitutive C/EBP-like DNA binding proteins attenuate the 
IL-1α induced, NFκB mediated trans-activation of the 
angiotensinogen gene acute-phase response element. EMBO J. 
1990;9:3933-3944. 

104. Weihua X, Hu J, Roy SK, Mannino SB, Kalvakolanu DV. 
Interleukin-6 modulates interferon-regulated gene expression by 
inducing the ISGF3γ gene using CCAAT/enhancer binding 
protein-β (C/EBP-β). Biochim Biophys Acta. 2000;1492:163- 
171. 

105. Cohen B, Gothelf Y, Vaiman D, Chen L, Revel M, Chebath J. 
Interleukin-6 induces the (2'-5') oligoadenylate synthetase gene 
in M1 cells through an effect on the interferon-responsive 
enhancer. Cytokine. 1991;3:83-91. 

106. Dansky-Ullmann C, Salgaller M, Adams S, Schlom J, Greiner 
JW. Synergistic effects of IL-6 and IFN-γ on carcinoembryonic 
antigen (CEA) and HLA expression by human colorectal 
carcinoma cells: role for endogenous IFN-β. Cytokine. 1995;7: 
118-129. 

107. Stancato LF, Sakatsume M, David M, et al. Β interferon and 
oncostatin M activate Raf-1 and mitogen-activated protein 
kinase through a JAK1-dependent pathway. Mol Cell Biol. 
1997;17:3833-3840. 

108. Sakatsume M, Stancato LF, David M, et al. Interferon γ 
activation of Raf-1 is Jak1-dependent and p21ras-independent. J 
Biol Chem. 1998;273:3021-3026. 

109. Stancato LF, Yu CR, Petricoin EF, 3rd, Larner AC. Activation of 
Raf-1 by interferon γ and oncostatin M requires expression of 
the Stat1 transcription factor. J Biol Chem. 1998;273:18701- 
18704. 

110. Lewis TL, Shapiro PS, Ahn NG. Cell Signaling transduction 
through MAP kinase cascades. Adv Cancer Res. 1998;74:49- 
139. 

111. Cobb MH. MAP kinase pathways. Prog Biophys Mol Biol. 
1999;71:479-500. 

112. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 
2000;103:211-225. 

113. Fanger GR, Johnson NL, Johnson GL. MEK kinases are 
regulated by EGF and selectively interact with Rac/Cdc42. 
EMBO J. 1997;16:4961-4972. 

114. Hu J, Roy SK, Shapiro PS, et al. ERK1 and ERK2 activate 
CCAAAT/enhancer-binding protein-β-dependent gene transcription 
in response to interferon-γ. J Biol Chem. 2001;276:287-297. 

115. Roy SK, Hu J, Meng Q, et al. MEKK1 plays a critical role in 
activating the transcription factor C/EBP-β-dependent gene 
expression in response to IFN-γ. Proc Natl Acad Sci U S A. 
2002;99:7945-7950. 

116. Favata MF, Horiuchi KY, Manos EJ, et al. Identification of a 
novel inhibitor of mitogen-activated protein kinase kinase. J 
Biol Chem. 1998;273:18623-18632. 

117. Yan M, Dai T, Deak JC, et al. Activation of stress-activated 
protein kinase by MEKK1 phosphorylation of its activator 
SEK1. Nature. 1994;372:798-800. 

118. Deak JC, Templeton DJ. Regulation of the activity of MEK 
kinase 1 (MEKK1) by autophosphorylation within the kinase 
activation domain. Biochem J. 1997;322 (Pt 1):185-192. 

119. Yujiri T, Sather S, Fanger GR, Johnson GL. Role of MEKK1 in 
cell survival and activation of JNK and ERK pathways defined 

by targeted gene disruption. Science. 1998;282:1911-1914. 
120. Karandikar M, Xu S, Cobb MH. MEKK1 binds raf-1 and the 

ERK2 cascade components. J Biol Chem. 2000;275:40120- 
40127. 

121. Xu S, Robbins D, Frost J, Dang A, Lange-Carter C, Cobb MH. 
MEKK1 phosphorylates MEK1 and MEK2 but does not cause 
activation of mitogen-activated protein kinase. Proc Natl Acad 
Sci U S A. 1995;92:6808-6812. 

122. Baud V, Liu ZG, Bennett B, Suzuki N, Xia Y, Karin M. 
Signaling by proinflammatory cytokines: oligomerization of 
TRAF2 and TRAF6 is sufficient for JNK and IKK activation 
and target gene induction via an amino-terminal effector domain. 
Genes Dev. 1999;13:1297-1308. 

123. Lee FS, Peters RT, Dang LC, Maniatis T. MEKK1 activates both 
IκB kinase α and IκB kinase β. Proc Natl Acad Sci U S A. 
1998;95:9319-9324. 

124. Xia Y, Makris C, Su B, et al. MEK kinase 1 is critically required 
for c-Jun N-terminal kinase activation by proinflammatory 
stimuli and growth factor-induced cell migration. Proc Natl 
Acad Sci U S A. 2000;97:5243-5248. 

125. Kim T, Kim TY, Lee WG, Yim J, Kim TK. Signaling pathways 
to the assembly of an interferon-β enhanceosome. Chemical 
genetic studies with a small molecule. J Biol Chem. 2000; 
275:16910-16917. 

126. Mo X, Kowenz-Leutz E, Xu H, Leutz A. Ras induces mediator 
complex exchange on C/EBP β. Mol Cell. 2004;13:241-250. 

127. Hu J, Meng Q, Roy SK, et al. A novel transactivating factor that 
regulates interferon-γ-dependent gene expression. J Biol Chem. 
2002;277:30253-30263. 

128. Meng Q, Raha A, Roy S, Hu J, Kalvakolanu DV. IFN-γ- 
stimulated transcriptional activation by IFN-γ-activated 
transcriptional element-binding factor 1 occurs via an inducible 
interaction with CAAAT/enhancer-binding protein-β. J 
Immunol. 2005;174:6203-6211. 

129. Bos JL, de Rooij J, Reedquist KA. Rap1 signalling: adhering to 
new models. Nat Rev Mol Cell Biol. 2001;2:369-377. 

130. Feller SM. Crk family adaptors-signalling complex formation 
and biological roles. Oncogene. 2001;20:6348-6371. 

131. Alsayed Y, Uddin S, Ahmad S, et al. IFN-γ activates the 
C3G/Rap1 signaling pathway. J Immunol. 2000;164:1800-1806. 

132. Huang CC, You JL, Wu MY, Hsu KS. Rap1-induced p38 
mitogen-activated protein kinase activation facilitates AMPA 
receptor trafficking via the GDI.Rab5 complex. Potential role in 
(S)-3,5-dihydroxyphenylglycene-induced long term depression. 
J Biol Chem. 2004;279:12286-12292. 

133. Gallo KA, Johnson GL. Mixed-lineage kinase control of JNK 
and p38 MAPK pathways. Nat Rev Mol Cell Biol. 2002; 
3:663-672. 

134. Bock BC, Vacratsis PO, Qamirani E, Gallo KA. Cdc42-induced 
activation of the mixed-lineage kinase SPRK in vivo. 
Requirement of the Cdc42/Rac interactive binding motif and 
changes in phosphorylation. J Biol Chem. 2000;275:14231- 
14241. 

135. Leung IW, Lassam N. The kinase activation loop is the key to 
mixed lineage kinase-3 activation via both autophosphorylation 
and hematopoietic progenitor kinase 1 phosphorylation. J Biol 
Chem. 2001;276:1961-1967. 

136. Tibbles LA, Ing YL, Kiefer F, et al. MLK-3 activates the 
SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6. 
EMBO J. 1996;15:7026-7035. 

137. Nihalani D, Meyer D, Pajni S, Holzman LB. Mixed lineage 
kinase-dependent JNK activation is governed by interactions of 
scaffold protein JIP with MAPK module components. EMBO J. 
2001;20:3447-3458. 



418                                                   The Interferon Signaling Network and Transcription Factor C/EBP-β 

Volume 4  Number 6  December 2007 

138. Mota M, Reeder M, Chernoff J, Bazenet CE. Evidence for a role 
of mixed lineage kinases in neuronal apoptosis. J Neurosci. 
2001;21:4949-4957. 

139. Xu Z, Maroney AC, Dobrzanski P, Kukekov NV, Greene LA. 
The MLK family mediates c-Jun N-terminal kinase activation in 
neuronal apoptosis. Mol Cell Biol. 2001;21:4713-4724. 

140. Roux PP, Dorval G, Boudreau M, et al. K252a and CEP1347 are 
neuroprotective compounds that inhibit mixed-lineage kinase-3 
and induce activation of Akt and ERK. J Biol Chem. 2002; 
277:49473-49480. 

141. Roy SK, Shuman JD, Platanias LC, et al. A role for mixed 
lineage kinases in regulating transcription factor CCAAT/ 
enhancer-binding protein-β-dependent gene expression in 
response to interferon-γ. J Biol Chem. 2005;280:24462-24471. 

142. Okamura H, Aramburu J, Garcia-Rodriguez C, et al. Concerted 
dephosphorylation of the transcription factor NFAT1 induces a 
conformational switch that regulates transcriptional activity. 
Mol Cell. 2000;6:539-550. 

143. Adachi M, Lewis EJ. The paired-like homeodomain protein, 
Arix, mediates protein kinase A-stimulated dopamine 
β-hydroxylase gene transcription through its phosphorylation 
status. J Biol Chem. 2002;277:22915-22924. 

144. Shuman JD, Sebastian T, Kaldis P, et al. Cell cycle-dependent 
phosphorylation of C/EBPβ mediates oncogenic cooperativity 
between C/EBPβ and H-RasV12. Mol Cell Biol. 2004;24: 
7380-7391. 

145. Bromberg JF, Horvath CM, Wen Z, Schreiber RD, Darnell JE, Jr. 
Transcriptionally active Stat1 is required for the antiproliferative 
effects of both interferon α and interferon γ. Proc Natl Acad Sci 
U S A. 1996;93:7673-7678. 

146. Heda GD, Kehoe KJ, Mahdi F, Schmaier AH. Phosphatase 2A 
participates in interferon-γ's induced upregulation of C1 
inhibitor mRNA expression. Blood. 1996;87:2831-2838. 

147. Bluyssen AR, Durbin JE, Levy DE. ISGF3γ p48, a specificity 
switch for interferon activated transcription factors. Cytokine 
Growth Factor Rev. 1996;7:11-17. 

148. Der SD, Zhou A, Williams BRG, Silverman RH. Identification 
of genes differentially regulated by interferon α, β, or γ using 

oligonucleotide arrays. Proc Natl Acad Sci U S A. 1998; 
95:15623-15628. 

149. Kawakami T, Matsumoto M, Sato M, Harada H, Taniguchi T, 
Kitagawa M. Possible involvement of the transcription factor 
ISGF3 γ in virus-induced expression of the IFN-β gene. FEBS 
Letters. 1995;358:225-229. 

150. Bachmann A, Hanke B, Zawatzky R, et al. Disturbance of tumor 
necrosis factor α-mediated β interferon signaling in cervical 
carcinoma cells. J Virol. 2002;76:280-291. 

151. Ait-Si-Ali S, Ramirez S, Barre FX, et al. Histone acetyl- 
transferase activity of CBP is controlled by cycle-dependent 
kinases and oncoprotein E1A. Nature. 1998;396:184-186. 

152. Impey S, Fong AL, Wang Y, et al. Phosphorylation of CBP 
mediates transcriptional activation by neural activity and CaM 
kinase IV. Neuron. 2002;34:235-244. 

153. Ait-Si-Ali S, Carlisi D, Ramirez S, et al. Phosphorylation by 
p44 MAP Kinase/ERK1 stimulates CBP histone acetyl 
transferase activity in vitro. Biochem Biophys Res Commun. 
1999;262:157-162. 

154. Kovacs KA, Steinmann M, Magistretti PJ, Halfon O, Cardinaux 
JR. CCAAT/enhancer-binding protein family members recruit 
the coactivator CREB-binding protein and trigger its 
phosphorylation. J Biol Chem. 2003;278:36959-36965. 

155. Schwartz C, Beck K, Mink S, et al. Recruitment of p300 by 
C/EBPβ triggers phosphorylation of p300 and modulates 
coactivator activity. EMBO J. 2003;22:882-892. 

156. Pandey PK, Udayakumar TS, Lin X, Sharma D, Shapiro PS, 
Fondell JD. Activation of TRAP/mediator subunit TRAP220/ 
Med1 is regulated by mitogen-activated protein kinase- 
dependent phosphorylation. Mol Cell Biol. 2005;25: 10695- 
10710. 

157. Deiss LP, Feinstein E, Berissi H, Cohen O, Kimchi A. 
Identification of a novel serine/threonine kinase and a novel 
15-kD protein as potential mediators of the γ interferon-induced 
cell death. Genes Dev. 1995;9:15-30. 

158. Inbal B, Cohen O, Polak-Charcon S, et al. DAP kinase links the 
control of apoptosis to metastasis. Nature. 1997;390:180-184. 

 
 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


