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The Role of the p38 Pathway in Adaptive Immunity 
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Since its discovery in 1993, the mitogen-activated protein (MAP) kinase p38 has attracted much attention for its 
role in a wide range of cellular processes, many of which involve the immune system. Although p38 has been 
heavily implicated in the function of all type immune cells, research has tended focus on its role in innate immunity. 
In this review we attempt to highlight some of the major discoveries that have been made regarding p38’s role in 
adaptive immunity, and also to discuss the possible future implications of these discoveries. Cellular & Molecular 
Immunology. 2007;4(4):253-259. 
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Introduction 
 
p38 (or p38α) was discovered and cloned while studying 
intracellular signaling pathways of inflammatory and stress 
responses (1-4). The structure of p38 revealed it to be a 
member of the mitogen-activated protein (MAP) kinase 
family. Three closely related proteins, p38β, p38γ (also 
known as ERK6 or SAPK3), and p38δ (SAPK4), were later 
identified and classified with p38α as a new MAP kinase 
family subgroup. Although the four mammalian p38 isoforms 
tend to share similar activation profiles, the kinetics and 
levels of activation of these isoforms have been found to vary 
(5-8). Additionally, these p38 isoforms only share around 
60% sequence identity with one another and 40-45% 
sequence identity with other MAPK family members (9). 
This structural variance is believed to allow for the selective 
activation of different isoforms in different cell types by 
allowing specific combinations of upstream regulators and 
co-activators to activate a given p38 isoform under various 
physiological conditions and biological contexts (7, 10).  

Like all other MAP kinases, p38 kinases are primarily 
activated by a tri-kinase cascade (although they can also be 
activated by some tri-kinase cascade-independent mechanisms 
(11-14)). At the top of this cascade are MAP3Ks (MAP 
kinase kinase kinases), followed by MKKs (MAP kinase 

kinases), and then MAP kinases (i.e., p38). The MAP3Ks in 
this cascade are not very clearly defined, but should include 
TAK1, ASK1, and MLK3. The MKKs that activate p38 are 
primarily MKK3 and MKK6, with MKK4 also having been 
shown to induce p38α and p38δ activation in a few specific 
cell types, despite primarily serving as a JNK activator (6).   

More than a dozen p38 substrates have been found, 
including protein kinases, transcription factors, and other 
proteins (Table 1). Phosphorylation of these substrates is 
essential for executing the biological functions of p38 group 
kinases, including the regulation of the cell cycle, cell 
development, cell differentiation, senescence, tumorigenesis, 
apoptosis, and immune responses (14-35). Although a 
simplified model can be drawn depicting the regulation and 
functions of the p38 pathway, the diverse role of the p38 
pathway in different physiological and pathological processes 
has demonstrated that the regulation and function of the p38 
pathway vary considerably among different cell types and 
biological processes. Therefore, a given function of the p38 
pathway has to be understood within the context of a certain 
system and cell type. Here we attempt to review the current 
understanding of the p38 pathway in the context of the 
adaptive immune system. 
 
Role of p38 in T lymphocytes 
 
T lymphocyte development and differentiation 
The progression of early T cell (thymocyte) development is a 
complex process, beginning with hematopoietic stem cells in 
the bone marrow that migrate to the thymus and undergo a 
process of growth, differentiation, proliferation, and thymic 
selection. p38 activity is required early on in T cell 
development, but persistent activation of it has been found to 
block CD4-CD8- double-negative (DN) T cells from 
progressing into CD4+CD8+ double-positive (DP) T cells (36, 
37). Inactivation of p38 must occur in order to end this p38- 
induced cell cycle arrest, indicating the critical importance of 
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p38 MAPK in regulating the differentiation and proliferation 
of early stage in vivo thymocytes (37). 

Thymic selection, a process in which DP thymocytes 
become either single-positive (SP) CD8+ or CD4+ 
thymocytes or undergo self-destruction, follows this stage. 
Interestingly, despite the necessity of p38 inactivation for DN 
thymocytes to convert to DP thymocytes, both the positive 
and negative selection phases that follow this conversion 
appear to require the reactivation of p38 to some capacity.  

During positive selection, DP thymocytes are screened 
for their ability to react with self-antigens complexed with 
major histocompatibility complex (MHC) molecules. The 
binding of T cell receptors (TCRs) to self-antigen/MHC 
molecules activates p38, along with other intracellular 
survival signals, which in turn protects thymocytes from 
apoptosis and also differentiates them into CD8+ (CTL) or 
CD4+ (Th) thymocytes (65, 66). Although it has been 
observed that p38 activity is not required for positive 
selection (36), as it appears that the MAP kinase ERK plays a 
more dominant role in positive selection (65, 67), it has been 
shown that severe inhibition of MAPK activity significantly 
impairs positive selection (65). Additionally, p38, unlike 
ERK, appears to have low-level constitutive activity in the 
absence of TCR engagement (65, 68-70).  

During negative selection, SP thymocytes that survive 
positive selection are screened according to their level of 
reactivity to self-antigen/MHC molecules. Thymocytes that 
react too strongly receive an apoptosis signal and never 
become mature T cells. The role of p38 in negative selection 
is less clear than in positive selection, but in vitro 
observations in thymocytes treated with the p38 inhibitor 
SB203580 suggest that p38 kinase activation is required for 
negative selection as well (36).  
 
Helper T lymphocyte (Th) 
In addition to facilitating thymocyte selection, and hence the 
differentiation of DP T cells into Th cells, p38 appears to be 
involved in the differentiation of immature Th cells into 
effector Th1 and Th2 cells. The process begins when 
immature Th cells are stimulated by MHC-peptide 
complexes on antigen-presenting cells (APCs), which occurs 

via the TCR and CD28 costimulator (71). The Th cells then 
produce IL-2 and undergo rapid cell division, differentiating 
into mature effector Th cells. 

Activation of p38 has been implicated in both Th1 and 
Th2 cell differentiation. In murine T cells, p38 is selectively 
activated in Th1 effector cells but not in Th2 cells. This 
selective activation plays a significant role in IFN-γ 
production, which is one of the aforementioned features that 
defines Th1 cells and distinguishes them from Th2 cells. 
Furthermore, MKK3 deficiency in mice has been found to 
correspond with a p38 deficiency-induced impairment of 
IFN-γ production, even when provided with antigen 
presenting cells from a wild-type B6 mouse. By contrast, 
transgene-encoded constitutively active MKK6 has been 
found to correspond to an increase in p38 activity and an 
increase in IFN-γ transcription. However, in human CD4 T 
cells, inhibition of p38 by an imidazole inhibitor or by 
expression of a dominant negative mutant of p38 reduced the 
production of IL-4, IL-5, and IL-13 in response to CD3 
and/or CD28 stimulation (72, 73), indicating that p38 plays a 
crucial role in regulating Th2 cytokine production. In 
addition, inhibition of p38 by an imidazole inhibitor has been 
found to correspond to a decrease in nuclear translocation 
and phosphorylation of GATA3, which is critical for Th2 
cytokine production (74, 75). The main MKKs upstream of 
TCR-mediated p38 activation in T cells are MKK3 and 
MKK6 (76). However, an MKK-independent p38 activation 
pathway has also been suggested based on the observation 
that p38 was found to be phosphorylated and activated 
through an alternate pathway that is independent of MKK3/6 
activation (77). In this alternate pathway the SRC family 
kinases LCK and ZAP70 are sequentially activated upon 
TCR stimulation, and ZAP70 in turn phosphorylates p38 at 
residue Tyr323, not at residues Thr180 and Tyr182, which 
compose the well-known p38 dual phosphorylation motif. 
Phosphorylation at Tyr323 effectively activates p38 by 
inducing the autophosphorylation of Thr180 and Tyr182, 
judging from the observation that cells expressing Y323F 
mutant p38 and cells exposed to SB203580 exhibit impaired 
dual autophosphoryation. It is not known why this alternate 
pathway has evolved or how it is regulated; however, it 
seems probable that tissue- and/or stimuli-restricted p38 
activation pathways might exist. Additionally, no evidence of 
Tyr323 phosphorylation in B cells has been found (78). 

The downstream targets of the p38 kinase cascade that 
are responsible for IFN-γ production are believed to include 
members of the ATF transcription factor family, as 
c-jun/ATF2 sites within the IFN-γ promoter have been 
identified and a series of ATF bindings sites have been 
identified within the proximal and distal IFN-γ elements (two 
functionally active IFN-γ elements) (79, 80). However, ATF2 
mutant cells have not been found to exhibit a decrease in 
IFN-γ production, which could imply that different factors, 
possibly ATF isoforms, can compensate for one another. 
 
Cytotoxic T lymphocyte (CTL) 
CTLs are important members of the immune system, serving 

Table 1. Substrates and potential substrates of p38 MAPK 
 
 Substrates 

Protein kinases MK2 (4, 38), MK3 (39), MNK1 (40, 41), 
PRAK (42), MSK (43, 44) 

Transcription factors ATF2 (45), ATF1 (46, 47), Sap1 (48, 49), 
GADD153 (50), p53 (51), C/EBPβ (19), 
MEF2C (52), MEF2A (53), STAT1 (54), 
CHOP (50), ETS1 (55), Pax6 (56), ELK-1 
(57), MITF (58) 

Other protein 
substrates 

cPLA2 (59), Na+/H+ exchanger isoform-1 
(60), EE1A (61), Rab5:GDI complex (62), 
EGFR (63), Bcl-2 (64), Bcl-xL (64)  
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a role in destroying virus-infected and damaged cells, but 
little is known about the role that p38 plays in their function 
when compared to how much is known about the function of 
Th cells. However, it has been observed that p38 regulates 
IFN-γ production in CTL cells, as it does in Th cells (81), 
suggesting that p38 signaling is involved in IFN-γ induction 
pathways in both cell types (81). 
 
Regulatory T lymphocyte (Treg) 
A recent study by Steinbrink group has further demonstrated 
the critical importance of p38 in another facet of adaptive 
immunity, the coordination of the suppressor function of 
regulatory T (Treg) cells (also known as CD4+CD25+ T cells). 
Their study found that p38 induces p27Kip1, which inhibits the 
cell cycle promoter cdk, effectively inducing and maintaining 
anergy in Treg (82). Furthermore, they found that the p38 
inhibitor SB203580 led to cell cycle progression and a 
complete loss of regulatory function. 
 
Apoptosis in T lymphocyte 
Early in vitro studies showed that activation of the p38 
pathway is essential for Fas-induced T cell apoptosis (83). 
Activation of p38 MAPK in vivo induced apoptosis in CD8+ 
T cells, but not in CD4+ cells, indicating that activation of the 
same pathway can lead to distinct phenomena in the different 
T cell subsets (81). CD8+ T cell-specific apoptosis by p38 
appears to occur due to a selective Bcl-2 reduction in this 
subset of T cells. Binding of the Fas ligand to its receptor Fas 
activates p38 in CD8+ T cells (64). Fas-mediated activation 
of p38 in CD8+ T cells induced the phosphorylation of 
Bcl-xL and Bcl-2 and prevented the accumulation of these 
antiapoptotic molecules within the mitochondria, which 
would result in the induction of apoptosis.  
 
Role of p38 in B lymphocytes 
 
B lymphocyte development 
In contrast to T lymphocytes, the requirement of p38α in B 
lymphocyte development, differentiation, and function is not 
well established. In the spleen, mature B lymphocytes 
develop from transitional type 1 (T1) and type 2 (T2) B cell 
precursors. Compared to T1 B cells, p38α, ERK, and Akt are 
predominantly activated following BCR (B cell receptor) 
crosslinking in T2 B cells. p38α, together with the other 
signaling molecules, is engaged in the stage-specific 
signaling pathway in the development process that induces 
the maturation of B cells (84). 
 
B lymphocyte activation 
CD40 is one of the major receptors that regulate B 
lymphocyte development and activation. CD40-mediated 
activation of B lymphocytes has been shown to induce 
activation of p38α, which resulted in the nuclear 
translocation of transcription factor NF-κB and ultimately 
promoted IgE isotype switching and facilitated the 
production of IgE (85, 86). p38α is required for CD40- 
induced gene expression and proliferation in B lymphocytes, 

as crosslinking of CD40 has been shown to rapidly induce 
the activation of p38α and its downstream kinase MK2, and 
as SB203580 treatment completely abolishes MK2 activation. 
CD40-induced expression of surface CD54/ICAM-1 was 
selectively reduced by SB203580, whereas CD40 and 
CD95/Fas were not affected by SB203580 (87). p38 is also 
linked to CD40 ligation-induced cytokines, such as IL-10, 
TNF-α, and LT-α, through the TRAF3-mediated signaling 
pathway (88). High-density microarray results from 
CD40-ligated murine B lymphocytes indicate that p38 may 
contribute by downregulating the expression of genes that 
negatively regulate cell growth, such as Rb2, Sap-1, and 
Ndr1 (89). 

BCR is another major receptor that regulates B 
lymphocyte activation. Although among the MAP kinase 
pathways, ERK is primarily activated by BCR (90), the p38 
pathway still plays a role in BCR-mediated cellular changes. 
BCR-mediated signaling in B lymphocytes promotes the 
activation of p38 and results in the phosphorylation of the 
downstream substrates cAMP response element binding 
protein (CREB) and MAPK-activated protein kinase 2 
(MK2), and the inhibition of p38 by SB203580 significantly 
reduced the phosphorylation of these substrates (91). 
BCR-mediated activation of p38 in B cell line BT40 was 
abolished in Lyn/Syk-double deficient cells, but was not 
affected in PTK-deficient cells, indicating that activation of 
p38 is regulated by Lyn and/or Syk (92). 

Interleukin-4 (IL-4) is a pleiotropic cytokine, which has 
an important function in the regulation of B cells during 
humoral immune responses (93). IL-4, together with CD40- 
mediated signals, stimulates the proliferation of B cells and 
induces the expression of CD23, MHC class II molecules, 
and induces the synthesis of IgG1 and IgE. Treatment of IL-4 
and CD40 optimally induced the activation of p38, while the 
p38 inhibitor SB202190 and a dominant negative p38 mutant 
inhibited IL-4-induced expression of CD23 in B cells. 
Although p38 did not phosphorylate STAT6 (signal 
transducer and activator of transcription 6), it did directly 
regulate the transactivation activity of STAT6 (94). Another 
STAT6-independent IL-4 signaling pathway has been found 
to occur in B cells, instead of being mediated by SOCS3 
(suppressor of cytokine signaling 3). SOCS3 expression was 
increased 9-fold within 5 hours of IL-4 treatment, and this 
induction was blocked by inhibitors of either JNK or p38 
(95).  

p38 is also involved in cellular responses induced by a 
number of other B lymphocyte activators. B lymphocyte 
stimulator (BLyS) induces human immunoglobulin switch 
recombinase and cytidine deaminase, and the induction of 
these enzymes are almost completely reversed by SB203580 
treatment (96), suggesting that p38 is required for the 
immunoglobulin class switch process in B cells. Crosslinking 
of membrane IgM activates B lymphocytes, and p38 is also 
required for phosphorylation of CREB resulting in activation 
(91). Norepinephrin stimulation of the β2-adrenergic receptor 
(β2-AR) in B lymphocytes was found to be directly 

dependent on p38 MAPK-dependent upregulation of low- 
affinity Fc receptor for IgE (CD23) mRNA, and 
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consequently the rate of mature IgE mRNA transcription was 
increased. The β2-AR-induced activation of p38 also increased 
IgE and CD23 release from the cell, suggesting that p38 
could be a potential target for treating atopic diseases (97). 
Several cellular stress stimuli, such as osmotic shock, 
oxidative stress, chemical stress, and inflammatory cytokines, 
induced the production of 5-lipoxygenase, which was 
inhibited by the addition of the p38 specific inhibitor 
SB203580 (13).  

Differential activation of p38, ERK, and JNK MAPKs 
might be related to the diverse cellular processes in B 
lymphocytes. These signaling pathways are simultaneously 
activated, but cells can be differentially activated in 
additional signaling contexts, depending on the signal 
activators (98, 99). These MAPKs phosphorylate different 
substrates and regulate the activation of different 
transcription factors such as AP-1, NF-κB, CREB, or ATF2. 
 
B lymphocyte apoptosis 
Ligation of CD40 in certain B cell lines may induce 
apoptosis and decrease proliferation (100-102). Arimura et al. 
reported that transfection of dominant negative JNK or 
treatment of SB203580 strongly reduced CD40-induced 
inhibition of B cell proliferation, suggesting that JNK and 
p38 are required for the CD40-induced inhibition of cell 
proliferation (103). In memory B lymphocytes, activation of 
p38 resulted in apoptosis by means of phosphorylation of 
Bcl-2 and release of cytochrome c, which could be prevented 
by the addition of a nerve growth factor (NGF) (104). It has 
also been reported that crosslinking of B lymphocyte 
membrane IgM, not membrane IgD, induces a delayed and 
sustained activation of JNK and p38 that results in apoptosis 
(105).  
 
Future perspectives 
 
p38α, p38γ, and p38δ are very abundant in both T and B cells, 
and the expression of p38β is also detectable in T and B cells, 
and therefore the p38 signaling pathway must play significant 
roles in many cellular processes and responses in T and B 
cells. As we have summarized above, p38 activation is 
associated with T and B cell development and activation; 
however, there is also some data refuting the requirement of 
p38 in T and B cells development and proliferation. A 
chimeric p38-deficient mouse generated by using a 
RAG-deficient blastocyst complementation (RDBC) method 
showed normal T and B cell development, suggesting that 
p38 was dispensable for T and B lymphocyte development 
and proliferation (106). One of the possible interpretations of 
this observation is that other p38 group members can 
compensate for the loss of p38 in T and B cell development, 
since all p38 group members are expressed in T and B cells 
and the expression levels of p38γ and p38δ are much higher 
in T and B cells in comparison with many other cell types. 
Given the fact that the p38 pathway is essential for stress 
responses in all types of cells, the role of the p38 pathway in 
the stress responses of T and B cells is most likely to be 

essential too. The evidence showing that the p38 pathway 
plays an important role in gene expression in T and B cells is 
consistent with the observed functions of p38 in other cell 
types. We believe that the function of p38 in regulating gene 
expression is important in adaptive immunity. Because of the 
importance of adaptive immunity in human host defense and 
in immunity-related disease, and because p38 has long been 
considered to be a drug target in treating a number of 
diseases, more effort should be applied to investigate the 
function of the p38 pathway in adaptive immunity. Studying 
the p38 pathway in adaptive immunity will not only lead to a 
better understanding of the biology of lymphocytes, but will 
also provide useful information for the development of 
therapeutics that target p38. 
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