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The capacity of pluri-potent stem cells to repair the tissues in which stem cells reside holds great promise in 
development of novel cell replacement therapeutics for treating chronic and degenerative diseases. However, 
numerous reports show that stem cell therapy, even in an autologous setting, triggers lymphocyte infiltration and 
inflammation. Therefore, an important question to be answered is how the host immune system responds to 
engrafted autologous stem cells or allogeneous stem cells. In this brief review, we summarize the progress in several 
related areas in this field, including some of our data, in four sections: (1) immunogenicity of stem cells; (2) 
strategies to inhibit immune rejection to allograft stem cells; (3) immune responses to cancer stem cells; and (4) 
mesenchymal stem cells in immune regulation. Improvement of our understanding on these and other aspects of 
immune system-stem cell interplay would greatly facilitate the development of stem cell-based therapeutics for 
regenerative purposes. Cellular & Molecular Immunology. 2007;4 (3):161-171. 
 
Key Words: immunogenicity, stem cell therapy, cancer stem cells, stimulation-responsive splicing model 
 
 
Introduction 
 
As aging progresses, the regenerative power of pluri-potent 
stem cells for tissue repair is often inadequate to sustain 
normal tissue function (1). Consequently, the incidence of 
chronic and degenerative diseases including Parkinson’s 
disease (2), Alzheimer’s disease (2), diabetes (3), heart 
disease (4), leukemia (5), and others (6) has significantly 
increased in the United States. Over 125 million people 
suffer from at least one chronic disease and the related 
medical costs account for 78% of total medical expenses. In 
the next 20 years, the proportion of populations over 85 years 
of age in western countries is anticipated to quadruple to 
reach 157 millions, placing an unsustainable burden on 
society (7). The capacity of pluri-potent stem cells to repair 
the tissues in which stem cells reside has been demonstrated 
due to various technological advances, which hold great 
promise as novel cell replacement therapeutics for treating 
chronic and degenerative diseases (1). Therefore, the 
emerging strategies in regenerative medicine will be very 
important in coping with the challenges outlined above.  

Stem cells are defined as clonogenic, self-renewing 

progenitor cells that can generate one or more specialized 
cell types. Embryonic stem cell (ESC) lines, established in 
mouse in 1981 (8, 9) and followed by the characterization of 
human ESC lines in 1998 (10), are derived from the inner 
cell mass of the blastocyst and are capable of generating all 
differentiated cell types in the body. To date, there are more 
than 300 human ESC lines, but only 22 human ESC lines are 
commercially available and registered with the NIH 
(http://stemcells.nih.gov/research/registry/) (6). Adult (postnatal) 
stem cells are still pluri-potent, but their differentiation 
ability is restricted to the cell types of a particular tissue, 
being responsible for organ regeneration. Two general 
categories of reserve precursor cells exist within the body 
and are involved in the maintenance and repair of tissue in 
adults: a) lineage-committed progenitor cells, and b) lineage- 
uncommitted pluri-potent stem cells. Dr. Young and his 
colleagues summarized a long list of common characteristics 
of lineage-committed progenitor stem cells (11). Progenitor 
stem cells (progenitor cells) may be committed to one or 
more specific tissue lineages, which can be further classified 
into unipotent, bipotent, tripotent, or multipotent, 
respectively (11). Each progenitor cell for a particular tissue 
lineage has a unique profile of cell surface cluster of 
differentiation (CD) markers (11). Progenitor cells conform 
to Hayflick’s limit of 50-70 population doublings (12).  

Primitive stem cells within the bone marrow niche (13) 
(hematopoietic stem cell, HSC) possess functional versatility 
broader than expected, which is termed trans-differentiation 
or stem cell plasticity. Stem cell plasticity describes the 
ability of adult stem cells to cross lineage barriers and to 
adopt the expression profiles and functional phenotypes of 
cells unique to other tissues (14) HSC, expressing markers of 
the hematopoietic lineage (CD45+) and of hematopoietic 
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stem cells (CD34+, CD133+, and CD117+, Thy-1low, but 
CD10-, CD14-, CD15-, CD16-, CD19-, and CD20-) (15, 16), 
are capable of genomic reprogramming upon exposure to a 
novel environment and give rise to other tissues such as liver, 
cardiac muscle, or brain (17, 18). Mouse HSCs’ markers are 
CD117 (c-Kit)+, Sca-1+, and Thy-1low but B220-, CD3-, CD4-, 

CD8-, Mac-1-, Gr-1-, and Ter119- (16). A defining property of 
murine hematopoietic stem cells (so-called side population) 
(19) is low fluorescence after staining with Hoechst 33342 
and Rhodamine 123 (20). The HSCs in mice transplanted at 
the single cell level gave rise to lifelong hematopoiesis, 
including a steady state of 20 to 1 × 105 HSC and over 1 × 
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Figure 1. Several aspects of immunology of stem cells and cancer stem cells. To generate enough stem cells for regenerative medicine, 
stem cells with self-renewal properties need to experience the following two stages: a) in vitro & in vivo replication and expansion; and b)
differentiation and tissue regeneration. During these processes, stem cells are stimulated by numerous factors, such as cytokines, growth 
factors, differentiation induction, pathological milieu, inflammation, trauma, infection, irradiation and drugs. Under the stimulation, gene 
expression in stem cells is altered, which leads to increased immunogenicity of stem cells and generation of “danger signals” by upregulation 
of MHC molecules, co-stimulation factors, and untolerized conventional antigen epitopes (via the mechanisms of stimulation-responsive 
alternative splicing and unconventional antigen expression). Therefore, to improve cell engraftment and tissue regeneration, several new 
strategies have been proposed including identification of stem cell antigens, control of aberrant antigen expression, tolerance induction, 
immunosuppression, regulatory T cell therapy, and mesenchymal stem cell therapy. In addition, normal stem cells and progenitor cells can be 
developed into cancer stem cells due to mutations. Cancer stem cells are believed to develop into, via tumorigenesis, cancer cells, latter of 
which have been unsuccessfully targeted by most of current immunotherapies. To enhance the efficacy of future cancer immunotherapy, both 
cancer stem cells and cancer cells need to be targeted.  
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109 blood cells produced daily (16). In addition to HSC, bone 
marrow also contains mesenchymal stem cells (MSCs), 
which have the capacity to proliferative extensively and form 
colonies of fibroblastic cells (defined as colony-forming 
units-fibroblastic; CFU-F) (21). Furthermore, discovery of 
cancer stem cells in leukemias and solid tumors (22) has 
added to the complexity of the stem cell field but stimulated 
great excitement for both stem cell and cancer biologists (23). 
Normal ESCs have been used in treating glycaemia in a 
mouse diabetes model (24), generating cardiomyocytes in 
dystrophic mice (25), improving cardiac function in post- 
infarcted rats (26), intervening in the progression of a rat 
model of Parkinson’s disease (27). Due to the great potential 
of stem cells in development of novel therapy for chronic and 
degenerative diseases as well as cancers in autologous and 
allogeneic settings, several immunological aspects related to 
stem cell-based cell replacement therapy raise important 
concerns, as shown in Figure 1, which are the focus of this 
brief review.  
 
Immunogenicity of stem cells  
 
One of the important issues regarding stem cell therapy is 
whether stem cells can be used as immune privileged 
“BAND-AID” without elicitation of inflammation and 
immune responses (28). Transplantation of allogeneic 
undifferentiated murine ESCs in the heart cause cardiac 
teratomas, which are immunologically rejected after several 
weeks in association with increased inflammation and 
upregualtion of class I and II major histocompatibility 
complex (MHC) molecules (29). In addition, in vivo 
differentiated ESCs transplanted into ischemic myocardium 
elicit an accelerated immune response as compared with 
undifferentiated ESCs, suggesting ESC immunogenicity 
increases upon differentiation (30). Moreover, immune 
responses are not limited to transplanted ESCs. Trans- 
plantation of neural stem cells also induces immunological 
responses (31) and lymphocyte infiltration (32). Furthermore, 
transplantation of ESCs in the heart elicits infiltration of a 
few CD3+ T cells even in the syngeneic mouse group, but not 
in the severe combined immunodeficiency disease (SCID) 
mouse group (33), the ESCs are not stealthy in the heart. In 
contrast to these findings, recent studies suggest some 
immune privilege is associated with human ESC-derived 
tissues (34-36). However, the adaptability of the immune 
system makes it unlikely that fully differentiated tissues will 
maintain their immune privilege and permanently evade 
immune rejection (5). Generally, an immune-privileged site, 
such as testis, does not express MHC class I or II molecules 
(37) and may express FasL to kill attacking lymphocytes (38). 
However, a recent report showed that the addition of Fas 
ligand (FasL) to healthy fetal MSC induces cell death by 
apoptosis (39), suggesting that stem cell death can be induced 
by attacking lymphocytes via a Fas/FasL mechanism. Human 
ES cells express low levels of MHC class I in vitro (40) in 
their undifferentiated state (41, 42) The MHC class I 
expression increases two to four-fold when the human ES 

cells are induced to differentiate to embryonic bodies, and an 
eight to ten-fold when induced to differentiate to teratomas 
(41). In contrast, other investigators observed MHC class I 
downregulation after differentiation induced with retinoic 
acid on Matrigel or in extended culture (42). MHC class I 
expression can be strongly upregulated after treatment of the 
ESCs with interferon-γ (43), a potent MHC expression- 
inducing proinflammatory cytokine known to be released 
during the course of immune responses (41, 42). Similarly, 
Bradley et al. reported that a four-fold expression of HLA 
class II molecules in human ESCs upon differentiation in 
vitro (28). These results suggest the possibility of 
upregulation of MHC expression in therapeutic ESCs when 
their use for treatment of ongoing chronic inflammatory 
diseases or other pathological interferon-γ and similar 
cytokine abundant conditions. In addition, our recent report 
supports the argument that interferon-γ may accelerate 
processing of T cell-reactive self-tumor antigen epitopes 
presumably via upregulation of immunoproteasomes (44), 
which further emphasizes that stimulations by cytokines, 
stress, drugs and other stimuli (45) may upregulate the 
immunogenicity of stem cells by promoting self-antigen 
epitope processing. Dr. Wu’s laboratory tested allogeneic 
undifferentiated mouse ESCs for their ability to trigger 
allogeneic immune response in a mouse model of myocardial 
infarction and observed progressive intra-graft infiltration of 
inflammatory cells mediating both adaptive and innate 
immune responses (6). These results suggest that the immu- 
nogenicity of mouse ESCs is increased upon their 
differentiation (6). Moreover, Drs. Mullally and Ritz pointed 
out that a formerly unappreciated level of “structural 
variation” within the normal human genome including 
deletions, duplications, inversions, copy number variants, and 
single nucleotide polymorphism all increase immunogenicity 
of transplanted stem cells and affect allogeneic stem cell 
transplantation (46). Therefore, allogeneic stem cells may not 
have reliable immune privilege.  

In order to generate sufficient numbers of stem cells for 
therapeutics, isolated stem cells are often required to expand 
and induced to differentiate in vitro (47). For example, to 
direct autologous adult stem cells into the cardiomyogenic 
lineage, several strategies have been developed (48) in 
addition to identification of growth factors and signaling 
molecules under cell culture conditions (4). Enucleated 
cytoplasts generated from human ESC-derived cardio- 
myocytes could be fused with autologous adult stem cells to 
generate cytoplasmic hybrids or cybrids. Adult stem cells 
could also be temporarily permeabilized and exposed to 
cytoplasmic extracts from these cardiomyocytes. Alter- 
natively, intact cells or enucleated cytoplasts from human 
ESC-derived cardiomyocytes could be co-cultured with adult 
stem cells in vitro to provide the cellular contacts and 
electronic coupling that might enable some degree of 
trans-differentiation to take place (48). Long-term in vitro 
culture and manipulations of ESCs (47) may adversely affect 
their epigenetic integrity including imprinting. Disruption or 
inappropriate expression of imprinted genes is associated 
with several clinically significant syndromes and 
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tumorigenesis in humans. By investigating methylation 
profiles of CpG sites within the IGF2/H19 IC, Dr. Mitalipov 
demonstrated abnormal hypermethylation within the IGF2/ 
H19 IC in all analyzed ES cell lines consistent with biallelic 
expression of these genes (49). Alteration of gene expression 
leads to changes in antigenic repertoire associated with 
long-term expansion of autologous stem cells, which may 
trigger the endogenous “danger signal” sensed by toll-like 
receptors (50) and activate the host immune system (51). 
Since the processing of HLA class I-restricted antigen 
epitope utilizes the ubiquitination-proteasome protein de- 
gradation pathway  (52, 53) and non-proteasome pathway 
(54, 55), then, intracellular antigens cannot escape from 
presenting their epitopes to the HLA class I pathway (56). 
Theoretically, every antigen with epitope structures blanked 
by proper processing sites (44) encodes T cell antigen epitope 
despite the potential variations in the HLA presenting alleles 
and the differences in their immunodominance [HLA binding 
affinity (57) and TAP binding affinity (58, 59)] among 
antigen epitopes (56). Therefore, cellular over-proliferation, 
tumor formation, and antigenic alteration resulting from in 
vitro expansion of autologous stem cells are potential 
problems that must be addressed before clinical trials of 
ESC-based therapy are initiated.  

In addition to above-mentioned immune recognition 
machinery including the expression of MHC molecules, 
cytokine function, antigen epitope processing, an important 
question of how nonmutated self-protein antigens, derived 
from normal stem cells, other normal cells and tumor cells, 
gain immunogenicity and trigger immune recognition remain 
poorly defined (56). Mutation may be responsible for 
elevated immunogenicity underlying some tumor-specific 
antigens generated via mutations (p53 and Ras), chromosome 
translocations and abnormalities, such as expression of fusion 
oncogene Bcr-Abl in chronic myelogenous leukemia (CML) 
(60-63). However, the mechanism underlying the immuno- 
genicity of most non-mutated self-tumor antigens is their 
aberrant overexpression in tumors. Dr. Zinkernagel et al.   
(64) suggested that the overexpression of self-antigens or 
novel antigenic structure, overcomes the threshold of antigen 
concentration at which an immune response is initiated (65). 
This threshold might be lower for certain untolerized regions 
of certain antigen epitopes. Overexpressed genes, up to 100 
folds, often encode tumor antigens identified by serological 
identification of self-antigens by screening expression cDNA 
library with patients’ sera (SEREX) (66), which may reflect 
the inherent methodological bias for the detection of 
abundant transcript (67). The overexpression of tumor 
antigens in tumors can result from transcriptional and post- 
transcriptional mechanisms. We recently demonstrated that 
overexpression of tumor antigen CML66L in leukemia cells 
and tumor cells via alternative splicing is the mechanism for 
its immunogenicity in patients with tumors (68), which not 
only illustrated the overexpression of tumor antigen as a 
principle but also elucidated its molecular mechanism (68). 
In addition, expression of one of the major tumor antigen 
categories, cancer-testis antigens, in tumors has been 
ascribed to abnormal demethylation (69, 70).  

A significant proportion of the SEREX-defined self- 
tumor antigens are autoantigens (71), for example, CML28 
that we identified is also an autoantigen Rrp46p (72). Beside 
the overexpression of self-tumor antigens and autoantigens, 
we also examined the potential mechanisms for non-mutated 
self-proteins to gain new untolerized structure to trigger 
immune recognition. We found that alternative splicing 
occurs in 100% of the autoantigen transcripts. This is 
significantly higher than the approximately 42% rate of 
alternative splicing observed in the 9,554 randomly selected 
human gene transcripts. Within the isoform-specific regions 
of the autoantigens, 92% and 88% encoded MHC class I and 
class II-restricted T-cell antigen epitopes, respectively, and 
70% encoded antibody binding domains. Furthermore, 80% 
of the autoantigen transcripts undergo noncanonical 
alternative splicing, which is also significantly higher than 
the less than 1% rate in randomly selected gene transcripts. 
These studies suggest that non-canonical alternative splicing 
may be an important mechanism for the generation of 
untolerized epitopes that may lead to autoimmunity. 
Furthermore, the product of a transcript that does not undergo 
alternative splicing is unlikely to be a target antigen in 
autoimmunity (73). To consolidate this finding, we also 
examined the effect of proinflammatory cytokine tumor 
necrosis factor-α (TNF-α) on the prototypic alternative 
splicing factor ASF/SF2 in the splicing machinery. Our 
results show that TNF-α down-regulates ASF/SF2 expression 
in cultured muscle cells. This result correlates with our 
finding of reduced expression of ASF/SF2 in inflamed 
muscle cells from patients with autoimmune myositis (74). 
Based on our data, we recently proposed a new model of 
stimulation-responsive splicing for the selection of auto- 
antigens and self-tumor antigens (45). Our new model 
theorizes that the significantly higher rates of alternative 
splicing of autoantigen and self-tumor antigen transcripts that 
occur in response to stimuli could induce extra-thymic 
expression of untolerized antigen epitopes for elicitation of 
autoimmune and anti-tumor responses. Of note, our model is 
not only applied to non-mutated self-tumor antigens 
associated tumors and autoantigens associated with various 
autoimmune diseases, but also applied to composition and 
expansion of self-antigen repertoire of stem cells. To facilitate 
the identification of immunogenic isoforms of antigens, we 
have developed strategies (72, 75-79) using improved SEREX 
(66) in conjunction with database-mining (73) and immuno- 
genic isoform mapping (68).  

However, despite some progress, the detailed definition of 
antigen repertoire of normal stem cells has not been reported 
yet. Identification of immunogenic isoforms of autoantigens 
and self-tumor antigens related to stem cell therapy is very 
important for the development of novel therapeutics for cell 
replacement therapy using stem cells (45).  
 
Strategies to inhibit immune rejection to 
allograft stem cells 
 
Various strategies have been developed to circumvent the 
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immunological barriers and inhibit the rejection of 
replacement stem cells. Lessons learned from bone marrow 
transplantation suggest that it is a formidable task to establish 
a stem cell bank to permit rudimentary matching of tissue (1). 
Tissues from MHC-/- mice are rejected by recipients at a rate 
comparable to their wild-type counterparts (80), suggesting 
that development of a universal ESC line without expression 
of its own MHC may not necessarily be beneficial. In 
addition, transplantation of tissues without expression of 
MHCs as an immunological surveillance mechanism may 
create a safe haven for viral infection and malignant 
transformation of cells (28). Several approaches have been 
extensively studied to improve the acceptance of transplanted 
stem cells. Firstly, use of donated oocytes for somatic nuclear 
transfer (SNT) to create nuclear transfer ESC lines (ntES 
cells) (81, 82), which are genetically identical to the recipient 
in all but their mitochondrial genome remaining the preserve 
of the oocytes themselves (83). The question remains 
whether mitochondrial proteins might act as a source of 
minor histocompatibility antigens (84, 85) for transplantation 
rejection antigens in this case although sharing nuclear genes 
ensure identity of the MHC haplotype. Secondly, in vitro 
differentiation of ESCs into desirable cell types for the 
therapy of diseases followed by purification of cardio- 
myocytes (25) and neurons (86) has been used to achieve 
better acceptance of allograft. Thirdly, ESC-derived dendritic 
cells (esDCs, a professional antigen presenting cell type) are 
implicated in tolerance induction, which share with 
therapeutic graft the full repertoire of transplantation antigens, 
and generation of immature esDCs may polarize responding 
T cells towards a regulatory phenotype (1). Dr. Harrison’s 
group demonstrated a proof of principle that because T cell 
tolerance can be induced by presenting antigen on resting 

antigen-presenting cells (APCs), hematopoietic stem cells 
engineered to express autoantigen in resting APCs could be 
used to prevent autoimmune disease (87). Proinsulin is a 

major autoantigen associated with pancreatic β cell 

destruction in humans with type 1 diabetes (T1D) and in 
autoimmune non-obese-diabetic (NOD) mice. Syngeneic 
transplantation of hematopoietic stem cells encoding 
proinsulin transgenically targeted to APCs totally prevents 
the development of spontaneous autoimmune diabetes in 
NOD mice. This antigen-specific immunotherapeutic strategy 
could be applied to prevent T1D and other autoimmune 

diseases in humans. Fourthly, tolerance is induced by 
establishment of hematopoietic chimerism (6). Finally, 
naturally occurring CD4+CD25highFoxp3+ regulatory T cells 
(Tregs) are differentiated T lymphocytes actively involved in 
the control and suppression of peripheral immunity (88). Over 
the past few years, a number of animal studies have 
demonstrated the critical role of these regulatory T cells in the 
outcome of allogeneic hematopoietic stem cell transplantation 
(HSCT). In these models, Tregs can exert a potent suppressive 
effect on immune effector cells reactive to host antigens and 
prevent graft-versus-host disease (GVHD) while preserving 
the graft-versus-leukemia (GVL) effect (89). Building on the 
results from recent studies, a number of therapeutic strategies 
are being developed to positively modulate Treg pools in vivo 

and prevent or even correct GVHD. Conversely, clinical 
interventions can also be envisaged to decrease Treg activity 
in vivo and enhance the GVL effect (89). Along this line, our 
recent data showed that Tregs regulate T cell responses to 
self-antigen, and that depletion of Tregs via a pro-apoptotic 
protein Bax-dependent mechanism enhances antigen-specific 
polyclonal T cell responses. These findings provide support 
for the idea that stem cell therapy can be improved by 
therapeutic modulation of survival of Treg cells (90).  

Minor histocompatibility antigens (mHA) are allogeneic 
targets of T cell-mediated graft-versus-tumor (GVT) effects 
following allogeneic (allo-) stem cell transplantation. Recent 
research has identified several mHAs as tumor proteins and 
has also disclosed their unique properties in both the induction 
and effector phase of GVT reactions. Targeting tumor-specific 
mHAs by adoptive immunotherapy will prevent tumor 
tolerance and evoke allo-immune responses, thereby 
enhancing GVT effects against leukemia and solid tumors 
(91). Recently acquired knowledge of the role of donor 
immunization status, new techniques in the generation of 
mHA-specific cytotoxic T lymphocytes in vitro, and 
innovative principles in vaccination will help to design 
strategies that exploit mHAs in the immunotherapy of cancer. 
However, the issue of how to control mHA-mediated immune 
responses and enhance stem cell allograft requires more work. 

Of note, pregnant women have been found to tolerate the 
unborn conceptus expressing a full set of nonmaternal 
antigens inherited from the father. The exact mechanisms of 
immune privilege exhibited by fetal tissues remain poorly 
defined, which may provide useful insights for future 
tolerance strategies to improve stem cell allograft acceptance 
(34).  
 
Immune responses to cancer stem cells 
 
The observation of similarities between the self-renewal 
mechanisms of stem cells and cancer cells has led to the new 
concept of the cancer stem cell. In 1994, the presence of 
cancerous stem cells in acute lymphocytic leukemia was 
documented by cloning such cells and documenting their 
self-renewing capacity (92). A self-renewing cancer stem cell 
population has been identified in solid tumors such as breast 
(93) and brain (94). These cancer stem cells represent 
approximately 1% of the tumor and are the only cells in the 
tumor generating tumors into nude mice (95). In cases of 
multiple myeloma, cells with a high self renewal potential 
have also been identified (96). Many researchers now suspect 
that all cancers are composed of a mixture of stem cells and 
proliferative cells with a limited lifespan (95). The 
implications of this research are far reaching. The relapse of 
many cancers following therapy could be the result of the 
survival of the cancer stem cells. Therefore, it is critical to 
fully characterize the immunological features of these cells 
and to develop immunotherapeutic approaches to eliminate 
these cancer stem cells without excessive toxicity to normal 
stem cells. It has been reported that PTEN dependence 
distinguishes hematopoietic stem cells from leukemia- 
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initiating cells (97). In this aspect, molecular characterization 
of cancer stem cells in comparison to normal stem cells 
suggests a good start. Since intracellular antigens cannot 
escape from presenting their epitopes to the HLA class I 
pathway (56), any differences in proteomic composition 
between cancer stem cells and normal stem cells can be 
“translated” into antigenic differences.  

Tumor immunosurveillance theory suggests that tumors 
can be recognized and eliminated as a result of natural anti- 
tumor immune responses that develop in the host (98-101). 
This argument is supported by the discoveries that: a) the 
immune system can protect the host against the development 
of spontaneous and chemically induced tumors; b) the 
immunogenicity of a tumor is imprinted on the tumor by the 
immunological environment; and c) individuals with tumor 
sometimes develop spontaneous reactivity against the 
antigens of the tumor (98-101). Many influences either from 
tumor or environment render a tumor either invisible to the 
host immune system or resistant to the anti-tumor immune 
responses. Several situations can lead to this result: a) the 
tumor is non-immunogenic, either because it never expressed 
any tumor antigens or lost them during tumor development, 
or the tumor acquired defects in the capacity to present tumor 
antigens to immune cells; b) the immune system may not be 
able to recognize or eliminate a tumor because the tumor 
produces immunosuppressive moieties and induces immuno- 
suppressive responses (98-102).  

A recent review explores similarities between lymphocytes 
and cancer cells, and proposes a new model for the genesis of 
human cancer. This model suggests that the development of 
cancer requires infection(s) in which determinants from 
pathogens can mimic self-antigens and co-present to the 
immune system, leading to breaking T cell tolerance. However, 
autoreactive T cells must be eliminated by apoptosis when the 
immune response is terminated. Some autoreactive T cells 
suffer genomic damage in this process, but manage to survive. 
The resulting cancer stem cell still retains some functions of 
an inflammatory T cell, so it seeks out sites of inflammation 
inside the body. Due to its defective constitutive production of 
inflammatory cytokines and other growth factors, a stroma is 
built at the site of inflammation similar to the temporary 
stroma built during wound healing. The cancer cells grow 
inside this stroma, forming a tumor that provides their 
vascular supply and protects them from cellular immune 
response. As cancer stem cells have plasticity comparable to 
normal stem cells, interactions with surrounding normal 
tissues cause them to give rise to all the various types of 
cancers, resembling differentiated tissue types. Metastases 
form at an advanced stage of the disease, with the proliferation 
of sites of inflammation inside the body following a similar 
mechanism. Therefore, future development of cancer 
therapies should provide more support for, rather than 
antagonizing, the immune system (103). 

Substantial antigenic differences have been found 
between tumors and normal tissues. A milestone in tumor 
immunology was the cloning of tumor antigen MAGE-1 by 
Dr. Boon’s team in 1991 (104-106), and subsequent 
characterization of the first HLA-restricted T cell defined 

antigenic epitope a year later (107). In 1995, another 
breakthrough was reported, Dr. Pfreundschuh’s team 
developed a new method of serological cloning approach 
called SEREX (66, 67, 108, 109). It allows a systemic and 
unbiased search for antibody responses against protein 
antigens expressed by human tumors. More than 2,000 tumor 
antigens have been identified (67) (also see an excellent 
database http://www.cancerimmunity.org/statics/databases.htm). 
These advances have led to a renaissance in tumor 
immunology and studies on anti-tumor immunotherapy (66, 
104) (also see our invited reviews (45, 56)).  

In addition, studies on identification of HLA-restricted T 
cell antigen epitopes of tumor antigens and T cell based 
immunotherapy to tumors have also made significant 
progress (110). By 2004, more than 257 HLA class I- and 
HLA class II-restricted T cell antigen epitopes have been id- 
entified (http://www.istitutotumori.mi.it/INT/AreaProfessionale/ 
Human_Tumor/default.asp?LinkAttivo=17B). Since they are 
derived from various tumors, these T cell antigen epitopes 
are very useful in diagnosis, prognosis, and immunotherapy 
in treatment of tumors. Furthermore, clinical studies of 
several formats of active immunization (recombinant viruses, 
naked DNA, dendritic cells pulsed with peptide, and peptides) 
in patients with melanoma showed that after two courses of 
immunization with the gp100, MART-1, or tyrosinase tumor 
antigens, up to 1-2% of all circulating CD8 T cell had 
anti-tumor activity, which is several hundred or thousand 
folds higher than the frequencies of any given antigen- 
specific T cells in the normal T cell repertoire. 

In identifying tumor antigens associated with cancer stem 
cells, one needs to bear in mind that there are two major 
groups of self-tumor antigens. The first group comprises 
conventional antigens, such as proteins encoded by genes 
with conventional exon-intron organization and translated in 
the primary open reading frame (ORF) (111). The conventional 
tumor-associated antigens include the five groups of tumor 
antigens above-mentioned (112, 113). Our reports on tumor 
antigens associated with chronic myelogenous leukemia (a 
myeloid stem cell-initiated hematologic malignancy), such as 
CML66 (68, 76, 90), CML28 (72), PV13 (79), PV65 (79), 
and others (75) belong to the first group. The second group 
comprises unconventional cryptic peptide antigens, including 
cryptic antigens encoded in a) the introns of genes (68) 
(MPD associated antigen MPD5) (114), b) the exon-intron 
junctional regions, c) the alternative reading frames (tumor 
antigen TRP-1) (115, 116) as opposed to the primary reading 
frames in mRNAs (117-119), d) the subdominant open 
reading frames located in the 5’untranslated region (UTR) or 
3’UTR of the primary open reading frame (111, 114), 
chromosome rearrangement, and aberrant processing (110). 
Recently, we used the SEREX technique to screen a human 
testis cDNA library with sera from three polycythemia vera 
(a stem cell-initiated myeloproliferative disease, MPD) 
patients who responded to interferon-α (IFN-α) and 
identified a novel unconventional antigen, MPD5. MPD5 
belongs to the group of unconventional cryptic antigens 
without conventional genomic intron/exon structure. MPD5 
antigen elicited IgG antibody responses in a subset of 
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polycythemia vera (PV) patients, as well as some patients 
with chronic myelogenous leukemia or prostate cancer, 
suggesting that they are broadly immunogenic. Upregulated 
expressions of MPD5 in the granulocytes from PV patients 
after IFN-α (78) or other therapies, might enhance their 
abilities in elicitation of immune responses in patients. In 
addition, we recently identified another unconventional 
antigen MPD6. MPD6 belongs to the group of cryptic Ags 
without conventional genomic structure and is encoded by a 
cryptic open reading frame located in the 3’-untranslated 
region of myotrophin mRNA. MPD6 elicits IgG antibody 
responses in a subset of polycythemia vera patients, as well 
as patients with chronic myelogenous leukemia and prostate 
cancer, suggesting that it is broadly immunogenic. By using 
bicistronic reporter constructs, we showed that the translation 
of MPD6 was mediated by a novel internal ribosome entry 
site (IRES) upstream of the MPD6 reading frame. 
Furthermore, the MPD6-IRES-mediated translation, but not 
myotrophin-MPD6 transcription, was significantly upregulated 
in response to IFN-α stimulation (77). Our findings provide 
new insights into the mechanism underlying the regulation of 
the self-antigen repertoire in eliciting anti-tumor immune 
responses in patients with myeloid stem cell proliferative 
diseases, and suggest their potential as the targets of novel 
immunotherapy. What is the significance of identification of 
unconventional tumor antigens for future immunotherapy? 
Since these unconventional antigen peptides are not 
expressed in normal cells and normal stem cells, and are not 
tolerated by host immune system, they are considered to be 
tumor-specific or cancer stem cell-specific. These features 
indicate that these unconventional antigens may be desirable 
to be targets for future immunotherapy (111).  

Despite significant progress in tumor immunology, 
several important questions remain to be addressed: Firstly, 
whether there are any differences between the 1% cancer 
stem cells and the majority of other cancer cells in 
immunogenicity and antigenic features. Of note, since cancer 
stem cells represent approximately 1% of the tumor cells (95), 
tumor antigens highly expressed in cancer stem cells may not 
be the tumor antigens highly expressed in tumors. The tumor 
antigens highly expressed in cancer stem cells may have been 
missed in routine SEREX screening and T cell epitope 
cloning procedures since immune responses against tumor 
antigens highly expressed in cancer stem cells are diluted 100 
fold during detection. Secondly, whether any identified tumor 
antigens are specifically upregulated in cancer stem cells in 
comparison to the majority of other cancer cells. Current 
anti-tumor antigen-specific immune therapies focused on 
tumor antigens highly expressed in tumor cells are not 
capable in elicitation of effective anti-cancer stem cell 
immune responses and inhibiting cancer stem cell growth and 
cancer relapse after initial treatment. Thirdly, whether there 
are any ever changing patterns of transient kinetics of tumor 
antigen expression in cancer stem cells and other cancer cells. 
Due to this complicated situation, majority cancer antigen- 
specific immunotherapy may not be able to be effective alone 
in eradiating tumors, especially in eradiating cancer stem 
cells (120). Therefore, future immunotherapy could be in a 

combinational format, including cancer cell antigen-specific 
immunotherapy and cancer stem cell antigen-specific immu- 
notherapy as well as anti-tumor immune enhancement 
therapies including our recently reported promotion of Treg 
apoptosis (90). In other words, long-term survival of patients 
with cancer can only be achieved if effective cytotoxic 
immune responses against both cancer stem cells and cancer 
cells are established.  
 
Mesenchymal stem cells in immune regulation 
 
Mesenchymal stem cells (MSCs) are adherent, fibroblast-like, 
pluripotent, non-hematopoietic progenitor cells. MSCs are 
initially isolated from bone marrow, which constitute 
0.001-0.01% of the total cell population (121) and have 
multilineage differentiation potential (i.e., the ability to 
differentiate into various tissues of mesenchymal and 
non-mesenchymal origin) (122-124). MSCs can be easily 
isolated (125) and found in many different species (122, 123), 
including humans (126), rodents (127) and primates (128), 
and in tissues other than bone marrow, including both adult 
tissues including umbilical cord blood (129), fetal bone 
marrow, blood, lung, liver and spleen (130), fat (131), hair 
follicles and scalp subcutaneous tissue (132), and periodontal 
ligament (133), and pre-natal tissues such as placenta (134). 
Although there is no agreement on any standardized marker, 
MSCs are typically defined by a combination of phenotypic 
and functional characteristics. Using flow cytometry (FCM), 
human MSCs are negative for hematopoietic markers CD14, 
CD34 and CD45. Human MSCs are positive in staining for a 
set of adhesion markers, such as CD44 (135), CD71 (135), 
CD73, CD90, CD105, and CD166 (21). Similarly, murine 
MSCs do not express hematopoietic markers CD45, CD34, 
and CD11b, while they are positive in surface expression of 
CD9, Sca-1, and CD44 (135). The hallmark of MSCs is the 
trilineage potential in vitro (the ability to differentiate into 
bone, cartilage and fat upon proper induction) (21). Human 
MSCs express HLA class I and can be induced by 
interferon-γ to express HLA class II. However, in co-culture 
experiments, human MSCs fail to induce proliferation of 
allogeneic lymphocytes in vitro, even after provision of a 
co-stimulatory signal by addition of CD28-stimulating 
antibodies or transfection of B7-1 or B7-2 co-stimulatory 
molecules (21). Several reports showed that MSCs also 
possess immunoregulatory properties, inasmuch as they can 
(124): a) Inhibit the function of mature T cells following their 
activation by non-specific mitogens (136); b) Suppress the 
response of naïve and memory antigen-specific T cells to 
their cognate peptide in mice (137); c) Promote the survival 
of MHC-mismatched skin grafts after infusion in baboons 
and reduce the incidence of graft-versus-host disease (GVHD) 
after allogeneic HSC transplantation in humans (138, 139); d) 
Cure severe acute GVHD refractory to conventional immu- 
nosuppressive therapy (140); e) Ameliorate experimental 
autoimmune encephalomyelitis (EAE) in mice (141). 
Therefore, we expect that MSCs may join CD4+CD25high 

Foxp3+ Tregs in facilitating engraftment of stem cell therapy 
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for regenerative medicine. 
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