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TNF-α Induces Transient Resistance to Fas-Induced Apoptosis in 
Eosinophilic Acute Myeloid Leukemia Cells 
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Tumor necrosis factor α (TNF-α) has been recognized as an activator of nuclear factor κB (NF-κB), a factor 
implicated in the protection of many cell types from apoptosis. We and others have presented evidence to suggest 
that Fas-induced apoptosis may be an important aspect of the resolution of inflammation, and that delayed 
resolution of inflammation may be directly associated with NF-κB-dependent resistance to Fas. Because TNF-α 
activates NF-κB in many cell types including inflammatory cells such as eosinophils, we examined effects of TNF-α 
signaling on the Fas-mediated killing of an eosinophilic cell line AML14. While agonist anti-Fas (CH11) treatment 
induced apoptosis in AML14 cells, no significant cell death occurred in response to TNF-α alone. Electrophoretic 
mobility shift assay (EMSA) revealed that TNF-α induced NF-κB transactivation in AML14 cells in a time- and 
dose-dependent fashion, and subsequent supershift assays indicated that the translocated NF-κB was the 
heterodimer p65 (RelA)/p50. Pre-treatment of cells with TNF-α dramatically decreased the CH11-induced cell 
death in a transient fashion, accompanied by suppression of activation of caspase-8 and caspase-3 activation. 
Inhibition of NF-κB transactivation by inhibitors, BAY 11-7085 and parthenolide, reversed the suppression of 
Fas-mediated apoptosis by TNF-α. Furthermore, TNF-α up-regulated X-linked inhibitor of apoptosis protein 
(XIAP) transiently and XIAP levels were correlated with the temporal pattern of TNF-α protection against 
Fas-mediated apoptosis. This finding suggested that TNF-α may contribute to the prolonged survival of 
inflammatory cells by suppression of Fas-mediated apoptosis, the process involved with NF-κB transactivation, 
anti-apoptotic XIAP up-regulation and caspase suppression. Cellular & Molecular Immunology. 2007;4(1):43-52. 
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Introduction 
 
Increasing genetic and experimental evidence indicates that 
TNF-α is associated with the inflammatory response that 
characterizes inflammatory diseases including airway 
eosinophilia and asthma (1, 2). TNF-α-mediated augmentation 
of the apoptotic killing of certain inflammatory cells has been 
demonstrated (3), and ligation of death receptors of the 
TNFR family can initiate signaling pathways leading to cell 
death or cell survival. Although TNF itself was named for its 

ability to induce cell death, it has been known for several 
years that TNF-α stimulation also can induce activation of 
the transcription factor NF-κB (4-8). Many normal cells are 
not killed by TNF and this may be related to NF-κB 
transactivation; blockade of NF-κB sensitizes cells to TNF 
and augments induced apoptotic cell death (9-11).  

NF-κB transactivation is induced by TNF-α via a 
pathway of IκB kinase (IKK) complex phosphorylation, 
degradation of IκBα and release of cytoplasm-sequestered 
NF-κB into the nucleus (11-14). TNF-α-induced NF-κB is 
mainly composed of a hetero-dimer of p65 (RelA) and a p50 

subunits (15). NF-κB transactivation can activate expression 
of a wide variety of genes including the inhibitor of apoptosis 
proteins (IAPs) (16-21). Recent studies have shown that 
NF-κB-regulated IAPs can inhibit caspase activity (22-25) 
and can prevent Fas-induced apoptosis (26). Additional 
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studies have shown that suppression of IAP genes sensitized 
endothelial cells to TNF-α-induced apoptosis (27). We have 
previously shown that an eosinophil-like subline of parental 
(p)AML cells, termed AML14.3D10, is resistant to 
Fas-induced cell death due to activation of NF-κB by Fas 
ligation (28). In the present study, we show that Fas induced 
significant apoptosis in the eosinophilic pAML14 cells, and 
this cell death was attenuated by pre-incubation of TNF-α via 
suppression of caspase activation and coincident with 
X-chromosome-linked inhibitor of apoptotic protein (XIAP) 
up-regulation. Inhibition of NF-κB transactivation using a 
pharmacological inhibitor of IKK abrogated the TNF-α- 
induced protection against Fas killing. We demonstrate that 
temporal TNF-α-mediated suppression of Fas-mediated 
apoptosis may be due to the transient up-regulation of XIAP 
by TNF-α. Our results suggest that TNF-α-induced NF-κB 
transactivation and resulting up-regualtion of expression of 
XIAP or other such NF-κB targets may play important roles 
in the prolonged survival eosinophil cells. We suggest that 
this prolongs survival of inflammatory cells may be 
important in the delayed resolution of airway inflammation in 
diseases such as asthma.  
 
Materials and Methods  
 
Cell culture and reagents 
The parental AML14 cell line (pAML14) is an eosinophilic 
AML line originally established from a FAB M2 acute 
myeloid leukemia patient and provided by Drs. C. Paul and 

M. Baumann (Wright State University, Dayton, OH) (29). 
pAML14 cells were maintained in RPMI 1640 medium 
supplemented with 8% FBS, 2 mM L-glutamine, 1% (w/v) 
gentamicin, 10 mM sodium pyruvate, 1 mM HEPES, and 5 × 
10-5 M 2-ME (Sigma-Aldrich, St. Louis, MO). Cells were 
grown up to a maximum density of 0.7 × 106 cells/ml at 37°C, 
5% CO2 and were passaged three times a week. After ~40 
passages, fresh cultures were started from frozen stocks to 
minimize genetic drift and phenotypic changes. The mouse 
anti-human Fas monoclonal (IgM) CH11 was obtained from 

Panvera (Madison, WI). Recombinant TNF-α was obtained 

from Alexis Biochemicals (San Diego, CA). Antibodies 
against NF-κB subunits p65 (RelA), p50, RelB and goat 
anti-human actin were purchased from Santa Cruz 
Biotechnology (Santa Cruz, CA). Anti-caspase-8 was 
provided by Dr. M. Peter (University of Chicago, Chicago, 
IL). Anti-caspase-3 was purchased from BD PharMingen 
(San Diego, CA). Antibody to XIAP was purchased from 
MBL International (Watertown, MA). The IKK inhibitor 
parthenolide was purchased from Calbiochem (San Diego, 
CA).   
 
Detection of apoptosis  
Cell death was determined by both trypan blue exclusion 

assay and flow cytometric analyses of DNA fragmentation. 
Briefly, pAML14 cells were cultured at a density of 3 × 105 
cells/ml/well in 48-well cell culture plates. CH11 was used 
primarily at a range of 5 to 100 ng/ml. Each cell sample was 

divided for trypan blue exclusion assays and for standard 
propidium iodide (PI) DNA analyses after designed time 
length from 3 to 72 h. Total cell death was first determined 

by trypan blue (0.2%) exclusion using a conventional light 
microscope. The remaining cells were centrifuged at 200 × g 
for 10 min and resuspended in hypotonic PI solution (50 
μg/ml PI in 0.1% Na citrate, 0.1% Triton X-100). To ensure 
cell lysis, cells were stored overnight in the dark at 4°C 
before flow cytometric analysis. At least 5,000 nuclei were 
examined for each sample to determine percentage of subG1 
DNA content. In preliminary experiments, hypotonic PI 
analyses of cell samples closely correlated with other DNA 
fragmentation and morphologic criteria of apoptosis. 
Percentages (± SE) of cell death reported in the results are 
derived from the flow cytometric analyses.                     
 
Western blot analysis 
Protein lysates were prepared from pAML14 cells after 
treatments described in the results. Equal amounts of protein 
were separated by sodium dodecyl sulphate - polyacrylamide 
gel electrophoresis and transferred onto nitrocellulose 
membrane (Sigma-Aldrich, St. Louis, MI). Immunoblotting 

was performed according to the ECL Western blotting 
protocol (Amersham Pharmacia Biotech, Arlington Heights, 
IL). Briefly, blots were blocked in 5% nonfat milk in 1× 
TBS-Tween solution for 1 h followed by one hour incubation 
with the appropriate primary antibody. Blots were then 
washed for 30 min with three changes of 1× TBS-Tween 
solution followed by one-hour incubation with the appropriate 
HRP-conjugated secondary antibody. Blots were washed 
again three times in 1× TBS-Tween solution and incubated 
for 1 min with ECL reagents. The results were visualized by 
exposing blots to autoradiographic film (Kodak, Rochester, 
NY).  
 
Extraction of nuclear protein and electrophoretic mobility 
gel shift assay (EMSA) for NF-κB activation analysis 
Cells were passaged and grown overnight at ~6 × 105 
cells/ml in cell culture flasks. After the treatments, the cell 
nuclear extracts were prepared according to a published 
method (28). Unless indicated, otherwise all procedures were 
performed at 4°C. Briefly, 10 × 106 cells were harvested by 
centrifugation and washed twice with ice-cold Dulbecco’s 

PBS buffer. The pellet was resuspended in 4× packed cell 
volume of buffer A [10 mM HEPES (pH 7.9), 1.5 mM MgCl2, 
10 mM KCl, 0.5 mM PMSF, 0.5 mM DTT] and incubated on 
ice for 10 min. The supernatant was discarded after 
centrifugation at 1,300 rpm for 7 min and 1× original packed 
cell volume of buffer A was added. The cell suspension was 
transferred to a 50-ml “woodrage” centrifuge tube and 
centrifuged at 8,500 rpm for 20 min in a Beckman JS 13.1 
rotor (Beckman Instruments, Palo Alto, CA). The supernatant 

was removed and set aside as the cytoplasmic extract. The 
pellet was gently washed with buffer A an additional time 
and resuspended in 1× original packed cell volume of buffer 
C [20 mM HEPES (pH 7.9), 25% glycerol, 1.5 mM MgCl2, 
420 mM KCl, 0.2 mM EDTA, 0.5 mM PMSF, 0.5 mM DTT]. 
The suspension was stirred on a rocking platform for 30 min 
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and then centrifuged in a Beckman rotor JA-17 (Beckman 
Instruments) at 12,500 rpm for 30 min. The supernatant was 
collected without disturbing the pellet and placed in dialysis 

tubing (Life Technologies, Grand Island, NY). Dialysis was 
performed for 1 h against three changes of 200 ml of buffer D 
[20 mM HEPES (pH 7.9), 20% glycerol, 100 mM KCl, 0.2 
mM EDTA, 0.5 mM PMSF, 0.5 mM DTT]. Following 
dialysis, the nuclear extract was clarified by centrifugation at 
14,000 rpm for 20 min in an Eppendorf microcentrifuge tube 
(Brinkman Instruments, Westbury, NY). Protease inhibitors 

including leupeptin, antipain, chymostatin, and pepstatin A 

(Sigma-Aldrich) were added immediately (5 μg/ml each) to 
extracts. The details of the EMSA have been described 
elsewhere (28). Briefly, double-stranded NF-κB synthetic 
oligonucleotides 5’-AGT TGA GGG GAC TTT CCC AGG 

C-3’ were purchased from Promega (Madison, WI) and 
end-labeled with [γ-32P]ATP (Amersham Pharmacia Biotech) 
and T4 polynucleotide kinase (NEB, Beverly, MA). A 
200-fold excess of unlabeled NF-κB probe and unrelated 
oligonucleotide probes for CArG was used to assess the 
specificity of the DNA-binding reaction. Binding reactions 
were performed on ice in a total volume of 15 μl. DNA probe 
(2,000 cpm, 1-5 fmol) was preincubated for 15 min with 1.5 
μl binding buffer B [50 mM HCl (pH 7.5), 20% Ficoll, 375 
mM KCl, 5 mM EDTA, 5 mM DTT] and 1 μg poly(dI-dC) 

(Promega). DNA-protein binding was initiated by adding 4 
μg of nuclear extract. A total of 200-fold excess of “cold” 
(unlabeled) NF-κB probe was used as a specific competitor. 
Electrophoresis was performed for 3 h at 100 V in 0.5× 
Tris-borate-EDTA running buffer in a 4°C cold room. The 
dried gel was visualized via exposure to high performance 
autoradiography film. The supershift analyses were performed 
by incubating the DNA-binding reactions with optimal 
concentrations (determined previously) of Abs to p65, p50, or 
RelB for an additional 20 min on ice before electrophoresis. 
The images were obtained by auto-radiography. 
 
Pharmacologic inhibition of the NF-κB transactivation  
pAML14 cells were cultured at a density of 0.6 × 106 cells/ml 
and were preincubated for 1 h with IKK inhibitor parthenolide 
(30) at a range of concentrations (0.1-10 μM) before addition 
of TNF-α. Optimal doses, at which augmentation of TNF-α- 
mediated NF-κB activation was greatest with the least 
background toxicity of inhibitors alone, were calculated and 
used in certain experiments as described.  
 
Results 
 
The inflammatory cytokine TNF-α is one of the major 
regulatory factors for proliferation and survival in 
hematopoietic cells (31-34). Specifically, TNF-α and Fas 
ligand interactions with their receptors are considered to be 
survival and death signals to many cells. In this study, we 
have examined the signaling effects of TNF-α on 
eosinophilic pAML14 cells and the consequence of this 
signaling on Fas agonist anti-Fas Ab CH11-induced 
eosinophilic pAML14 apoptosis. We analyzed cell death, 

caspase (-8 and -3) activation and cell death, following 
stimulation of these receptors under control conditions or in 
the presence of inhibitors of NF-κB activation. We also 
determined the effects of TNF-α stimulation on NF-κB 
transactivation and target anti-apoptotic XIAP expression.  

0

10

20

30

40

0 3h 6h 12h 18h 24h 30h

l
T
C
T

B

Casp-8

Casp-3

actin

32 kDa

41 kDa

0      3      6    12    18    24   30Time (h) 0      3      6    12    18    24   30Time (h)

TNF-α (5 ng/ml)         - +      +     +     +      +     +   

CH11 (100 ng/ml)       - +     +     +       +     +     +

TNF-α (2 h)/CH11     - +      +      +     +     +     +

55/54 kDa

32 kDa

41 kDa

55/54 kDa

32 kDa

41 kDa

55/54 kDaCasp-8

Casp-3

actin

Casp-8

Casp-3

actin

A

C
el

l D
ea

th
 (%

)

Control
TNF-α (5 ng/ml)
CH11 (100 ng/ml)
TNF-α (2 h)/CH11

Control
TNF-α (5 ng/ml)
CH11 (100 ng/ml)
TNF-α (2 h)/CH11

 
Figure 1. TNF-α attenuates Fas-induced apoptosis and 
suppresses caspase cascade in pAML14 cells. (A) TNF-α and 
CH11 killing assay. pAML14 cells were cultured at 3 × 105 cells/ml 
and treated with TNF-α (5 ng/ml), CH11 (100 ng/ml) with or 
without 1 h pre-treatment of TNF-α. Cells were harvested at time as 
indicated above. Percentage of cell death was determined by
hypotonic PI DNA analysis. (B) Western blot analyses of 
procaspase-8 and -3 cleavage in TNF-α or CH11-treated pAML 
cells are shown in top and middle panels. The bottom panel is CH11 
treatment following 1 h pre-treatment of TNF-α. Actin controls 
were performed on the same blots. 
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TNF-α attenuates Fas-induced apoptosis and suppresses 
caspase cascade in pAML14 cells  
The Fas agonist antibody, CH11, induced significant cell 
death in pAML14 cells (Figure 1A). pAML14 cells were 
treated with 5 ng/ml TNF-α, or 100 ng/ml CH11 with or 
without 1 h pre-incubation of TNF-α for 3-24 h. Cells were 
harvested by centrifugation and lysed using hypotonic PI 
solution as described above. Percentage of cell death was 
analyzed using flow cytometric analysis after treated with 
CH11 for 3 to 30 h. Significant cell death was induced by 
CH11 by 12 h following CH11 treatment, but this was 
abolished by pre-incubation of 5 ng/ml TNF-α. TNF-α alone 
had no apoptotic or additive survival effect on pAML14 cells 
(Figure 1A). Western blot revealed that the Fas ligation 
induced cleavage of both pro-casp8 and 3 after 12 h and 
these were suppressed by TNF-α pretreatment (Figure 1B). 
There was no significant detectable cleavage of procaspase-8 
or -3 in the TNF-α treated group. Actin controls were 
performed on same blot (Figure 1B).  
 
TNF-α induced NF-κB activation  
Previous studies have shown that NF-κB plays an important 
anti-apoptotic role in many cell types including eosinophilic 
cells (28). We examined TNF-α and CH11 mediated NF-κB 
transactivations in pAML14 cells. EMSA analyses were 
performed according to the previous study and showed that 
TNF-α induced NF-κB transactivation in pAML14 cells is 
both time- and dose-dependent (Figures 2A, 2B). While no 
activation of NF-κB in pAML14 eosinophils after treatment 
of 100 ng/ml of CH11 was observed (data not shown), 
TNF-α-induced nuclear translocation of NF-κB in these cells 
occurred as early as 10 min. There are five members of the 
NF-κB/Rel family of proteins that have been found expressed 
in mammalian cells: p65/RelA, c-Rel, RelB, p105/NF-κB1 
(which can be processed to p50), and p100/NF-κB2 (which 
can be processed to p52; reviewed in reference 35). These 
subunits usually exist as hetero- or homo-dimers. We 
examined the NF-κB subunits in pAML14 cells by supershift 
assay using Abs specific for p65, p50, and RelB. Nuclear 
extracts were prepared from pAML14 cells treated with 5 
ng/ml TNF-α for 30 min. Only antibodies against p65 and 
p50 shifted the NF-κB bands, indicating that p65/p50 
heterodimer is likely the activated form of the NF-κB 
induced by TNF-α in these cells (Figure 2C). Faint bands in 
some lanes which could be shifted by anti-p50 Ab only could 
represent endogenous p50/p50 homodimers.  
 
IKK-β inhibitor-parthenolide attenuated TNF-α protection 
against Fas-mediated apoptosis  
Because Fas-induced apoptosis of pAML14 cells can be 
suppressed by TNF-α, the induction of TNF-α-mediated 
transactivation of NF-κB suggests a link between potential 
NF-κB transactivation and suppression against CH11 killing. 
To further understand the role of NF-κB transactivation in 
TNF-α protection against Fas-induced apoptosis, the effects 
of inhibition of NF-κB transactivation on TNF-α protection 
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Figure 2. TNF-α induced NF-κB tansactivation in pAML14 
cells. (A) EMSA analysis of the time course of NF-κB activation 
induced by TNF-α. (B) EMSA analysis of the dose response of 
NF-κB activation induced by TNF-α. pAML cells were stimulated 
with TNF-α at dose and time as indicated in the figure. (C)
Supershift EMSA analysis of TNF-α-induced NF-κB subunits in 
pAML cells. pAML cells were incubated with 5 ng/ml of TNF-α for 
30 min. Nuclear extracts were prepared from these cells and 4 μg of 
each nuclear extract was incubated with excess unlabeled 
competitor (NF-κB probe) (lane 1), 1.0 μg of each Ab against the 
NF-κB subunits p65/RelA (lane 3), p50 (lane 4), RelB (lane 5) or no 
antibody (lane 2) for 30 min at room temperature and then analyzed 
by EMSA. Supershifts of p65 and p50 subunits are indicated by 
arrowheads at lanes 3 and 4.  
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was examined using the pharmacologic IKK inhibitor, 
parthenolide (36). Parthenolide (10 μM) was used to pretreat 
cells for 1 h prior to TNF and/or CH11 treatments.  
Parthenolide treatment significantly increased cell death in 
comparison with untreated TNF-α/CH11 group (Figure 3A). 
In addition, pre-incubation of Bay11-7085 which is previously 
proven a potent inhibitor of IκB phosphorylation (37) and 
NF-κB transactivation in AML sublines (28), similarly 
attenuated TNF-α-mediated protection in AML14 cells  
(data not shown). EMSA confirmed that TNF-α-induced NF-κB 
transactivation was inhibited when cells were treated with 10 
μM parthenolide or Bay11-7085 (Figure 3B).  
 
TNF-α protects against CH11-induced apoptosis in transient 
and correlate with XIAP expression in pAML14 cells  
Numerous studies have shown that activation of NF-κB can 
lead to the anti-apoptotic proteins such as IAPs and other 
prosurvival proteins (23, 25, 38, 39). These anti-apoptotic 

proteins can inhibit the proteolytic activity of caspases and 
suppress apoptosis (25, 40, 41). Among these proteins, XIAP 
appears to be the most capable of inhibition of both upstream 
and downstream caspases (42-44). We examined the 
expression of XIAP in pAML14 cells following TNF-α 
treatment for 6 to 30 h as indicated in the Figure 4A. Western 
blot showed XIAP was maximum increased after 12 h 
treatment of 5 ng/ml TNF-α, and sustained 18 h after 
treatment, however it was decreased to the baseline level 
after 24 h (Figure 4B). Analyses of cell death were performed 
using flow cytometry, and the TNF-α protection effects were 
evaluated. TNF-α pre-incubation significantly suppressed 
CH11-induced apoptosis within 24 h after CH11 treatment 
(Figures 1A, 4A), but failed to sustain such protection by 48 
to 72 h (Figure 4B).   
 
Discussion 
 
TNF-α binding to the receptor TNFR1 can initiate apoptosis 
in some cells and increases the survival and proliferation in 
other cells by an incompletely understood mechanism 
(45-47). A recent study showed that macrophages induce 
neutrophil apoptosis through membrane TNF during parasite 
infection in mice, and emphasized the importance of TNF in 
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Figure 3. Preincubation with IKK-β inhibitor, parthenolide, 
attenuates TNF-α protection against Fas-mediated apoptosis.
(A) pAML14 cells were incubated with 100 ng/ml of CH11 plus or 
minus 1 h pre-treatment of TNF-α (5 ng/ml) at 37°C for indicated 
times with or without treatment with 10 μM parthenolide. Apoptosis 
was measured by FACS analysis of cells as described. Data 
represent the mean of three independent experiments. (B) EMSA 
analysis of inhibition of NF-κB activation by parthenolide. 
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Figure 4. TNF-α transiently protects against CH11-induced 
apoptosis and protection correlates with increased XIAP 
expression in pAML14 cells. (A) TNF-α failed to protect against 
CH11 killing after 48 h. pAML14 cells were treated with TNF-α (5 
ng/ml) and/or CH11 (100 ng/ml) (with or without 1 h pre-treatment 
of TNF-α). Cells were harvested at 24, 48, and 72 h. Percentage of 
cell death was determined by hypotonic PI DNA analysis. (B)
Western blot analyses of TNF-α-induced XIAP expression. pAML14 
cells were treated with 5 ng/ml TNF-α, and protein lysates were 
prepared at times indicated for Western blot analysis using 
anti-XIAP antibody. Actin control was performed on same blot.  
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the early control of inflammation (48). In cystic fibrosis, 
which is characterized by chronic airway inflammation, 
TNF-α-mediated control of inflammation is suggested by 
evidence of TNF-induced NF-κB transactivation and IL-8 
production (49). Others have shown that inhibition of NF-κB 
by overexpression of NF-κB inhibitor IκB-α resulted in the 
blockade of TNF-α-induced inflammatory cytokine production 
(10, 50). Transgenic mice expressing IκB-α superrepressor in 
airway epithelial cells has remarkably reduced influx of 
neutrophils into the airways and secretion of the NF-κB- 
targeted neutrophilic chemokine, macrophage-inflammatory 
protein-2, and the inflammatory cytokine, TNF-α when they 
were exposed to LPS. Together, these results suggest that 
NF-κB signaling is important for modulating airway inflam- 
mation (51). Infiltration of airway tissues by potentially 
pathogenic granulocytes (eosinophils and neutrophils) is a 
major characteristic of asthma and chronic obstructive 
pulmonary disease (COPD) (52-55). The failure of removal 
of infiltrating granulocytes via apoptosis or necrosis followed 

by macrophage engulfment may be a pathogenesis of asthma 
or COPD (56-59). However, the molecular mechanisms 
involved have not been revealed despite the evidence of 
elevated TNF-α in both asthma and COPD (2, 60). We have 
previously reported that Fas ligation induced transactivation 
of NF-κB in eosinophilic AML.3D10 cells, and inhibition of 
transactivation of NF-κB by either pharmacological inhibitor- 
Bay11-7085 or by overexpression of IκB-α led to Fas- 
mediated apoptosis. We suggested that NF-κB trans- 
activation may play an important role in airway eosinophil 
accumulation during diseases such as asthma (28).  

The AML14 cell line was first established from a patient 
with acute myelogenous leukemia, and it exhibits 
eosinophilic differentiation in suspension in response to IL-3, 
IL-5, and GM-CSF (29, 61). Although this cell line exhibits 
some differences from primary eosinophils, AML14 cells 
share many of the properties of primary cells and has been 
widely used as a model to study adhesion, promoter activity,  
aspects of cell cycle, and nuclear receptors, as well as 

TNFR1

FADD

Caspase-8

Caspase-3, -7, etc

Apoptosis

XIAP

Fas/CD95

TRADD

TRAF2

RIP

Nucleus

Transcription

p50

p65

p50

p65

I
κ
B

p50

p65

I
κ
B

P

P

IKK

ParthenolideBay11-7085

FLIP?

TNF-α FasL
CH11

p50

p65

TNFR1

FADD

Caspase-8

Caspase-3, -7, etc

Apoptosis

XIAP

Fas/CD95

TRADD

TRAF2

RIP

Nucleus

Transcription

p50

p65

p50

p65

p50

p65

I
κ
B

I
κ
B

p50

p65

I
κ
B

I
κ
B

PP

PP

IKKIKK

ParthenolideParthenolideBay11-7085Bay11-7085

FLIP?

TNF-α FasL
CH11

p50

p65

p50

p65

 
 
Figure 5. Simplified diagram of potential signaling pathways during TNF-α-induced repression of Fas-mediated apoptosis in our 
eosinophilic cell model. Our results suggest that TNF-α induces transactivation of NF-κB in pAML14 cells. NF-κB signaling through 
TNFR1 involves a complex composed of the receptor, the adaptor TRADD, the kinase RIP1 and the protein TRAF2. Transactivation of 
NF-κB activated by TNF-α suppressing Fas-mediated caspase activation and apoptosis in pAML14 cells via up-regulating XIAP and other 
potential anti-apoptotic proteins such as FLIP. The inhibitors Bay11-7085 and parthenolide block NF-κB activation and abrogate 
TNF-mediated protection. 
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mechanisms of apoptosis in eosinophils (28, 62-65).  
Apoptosis is an important mechanism which may limit 
inflammation, and Fas can play a key role in inflammatory 
cell apoptosis and resolution of inflammation (66). Study on 
Fas (CD95)-induced apoptosis in the development and 
resolution of airway inflammation and airway hyper- 
responsiveness (AHR) using mouse model suggested that Fas 
expression can regulate the onset and resolution of AHR 
through an increase in eosinophil apoptosis (67). Admini- 
stration of Ad-FasL intratracheally significantly decreased 
AHR and eosinophilia by inducing the apoptosis of 
eosinophils, reducing IL-5 and eotaxin levels, as well as the 
number of infiltrated lymphocytes (68). In addition, 
deregulation of Fas on T cells may be sufficient for the 
development of long-term allergic airway disease in mice 
(69). However, whether Fas-mediated apoptosis of inflam- 
matory cells can be influenced by TNF-α and its effects via 
NF-κB activation are unknown.  

In the present study, we examine the TNF-α effect on 
Fas-mediated apoptosis of eosinophilic cells in light of the 
potential importance of TNF-α in airway inflammation. In 
addition to its activities outlined above, TNF-α can act as a 
survival factor in inflammatory diseases such as rheumatoid 
arthritis (9). Transactivation of NF-κB by TNF-α has been 
reported to block the activation of caspase-8 via activation of 
a group of genes encoding the caspase inhibitor proteins, the 
IAPs (10, 70). In the present study, we show that 
TNF-α treatment blocks Fas-mediated apoptosis in pAML14 
cells, and that decreased apoptosis is correlated to the 
suppression of the caspase cascade. TNF-α failed to induce 
apoptosis and activation of caspase-8 and -3 in eosinophilic 
pAML cells, but induced significant transactivation of the 
NF-κB heterodimer p65/p50 in both dose and time- 
dependent fashion. This suggests that TNF-α can act as a 
survival factor in these cells.  

The sesquiterpene lactone parthenolide inhibits NF-κB 
transactivation by preventing the induction of IKK-β, without 
affecting the activation of p38 and c-Jun N-terminal kinase 
(36). Further study has shown that parthenolide is capable of 
binding directly to and inhibiting IKK-β (71). In our study, 
pre-incubation of cells with parthenolide attenuated TNF-α 
protection against Fas-mediated cell death in pAML14 cells, 
and was accompanied by inhibition of TNF-α-induced 
NF-κB transactivation. Our results suggest that TNF-α induces 
transactivation of NF-κB in favor of survival or anti-apoptotic 
signaling in pAML14 cells. NF-κB signaling through TNFR1 
involves a complex composed of the receptor, the adaptor 
TRADD, the kinase RIP1 and the protein TRAF2 (Figure 5). 
When NF-κB is activated by complex I, TNF-α-mediated 
cell death is inhibited (72). Our findings suggest that 
complex I signaling can also override Fas-mediated apoptotic 
signaling through, at least in part, up-regulation of XIAP. 

XIAP is one of the NF-κB-regulated genes that counteract 
apoptotic signaling by TNF-α in a number of cells.  In 
endothelial cells, TNF-α-induced NF-κB-mediated induction 
of XIAP prevents lipopolysaccharide (LPS)-mediated apoptosis 
during inflammation (73). NF-κB-mediated expression of 

XIAP also blocks apoptosis in rat granulosa cells (74). The 
proapoptotic, anti-inflammatory effect of guggulsterone has 
been suggested to involve the suppression of TNF-mediated 
NF-κB transactivation and downregulation of anti-apoptosis 
target genes, including XIAP (75). In our pAML14 cells, 
XIAP was present at very low detectable level endogenously, 
but increased significantly 12 h after TNF-α treatment. 
However, levels of XIAP expression declined to baseline 
after 18 h incubation of TNF-α. The kinetics of TNF-induced 
XIAP expression was directly correlated with kinetics of 
TNF-α protection against Fas induction of apoptosis in 
pAML14 cells. It is likely that TNF-α suppression of 
Fas-mediated apoptosis involves XIAP or other NF-κB 
targets, and we are further testing this hypothesis. It is 
becoming increasingly apparent that XIAP is an important 
endogenous anti-apoptotic protein, and that increased 
expression of XIAP attenuates apoptosis through inhibition 
of caspases, particularly caspase-9, and via suppression of 
apoptosome function (76). Indeed, XIAP is the only IAP that 
can inhibit both upstream caspase-9 and downstream 
caspase-3, -7 (77-79). In vitro experiments using purified 
recombinant proteins have revealed that BIR3-Ring domain 
of XIAP is a specific inhibitor of caspase-9 whereas BIR1-2 
domains are specific for caspase-3 and -7 (80, 81). Because 
XIAP is not thought to inhibit caspase-8 directly (82), the 
observed inhibition of caspase-8 activation by TNF may 
involve other NF-κB targets such as FLIP. Although we did 
not detect a measurable increase in FLIP (or its isoforms), it 
is likely that this or some other NF-κB targets are involved in 
the protective actions of TNF-α affect caspase-8 activation in 
these cells, and we are currently investigating these 
additional or alternative pathways. Thus, additional questions 
remain regarding the detailed mechanisms by which TNF-α 
contributes to inflammatory cell survival, as well as for the 
overall role of TNF-α-mediated NF-κB transactivation in 
airway inflammation. Our data here suggest that TNF-α- 
mediated NF-κB transactivation and regulation of anti- 
apoptotic genes play important roles in Fas-mediated cell 
death in inflammatory cells. Understanding the contribution 
of TNF-α-mediated cell survival and the potential delay in 
resolution in such circumstances may be relevant to 
therapeutic approached in enhancing or modulating 
resolution, particularly in diseases of chronic inflammation.  
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