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The complement system plays an important role in mediating both acquired and innate responses to defend against 
microbial infection, and in disposing immunoglobins and apoptotic cells. The liver (mainly hepatocytes) is 
responsible for biosynthesis of about 80-90% of plasma complement components and expresses a variety of 
complement receptors. Recent evidence from several studies suggests that the complement system is also involved 
in the pathogenesis of a variety of liver disorders including liver injury and repair, fibrosis, viral hepatitis, alcoholic 
liver disease, and liver ischemia/reperfusion injury. In this review, we will discuss the potential role of the 
complement system in the pathogenesis of liver diseases. Cellular & Molecular Immunology. 2006;3(5):333-340. 
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Introduction 
 
The complement (C) system is a set of biochemical pathways 
that removes pathogen components from an organism as part 
of the innate and acquired immunity programs. Activation of 
the complement system triggers a wide range of cellular 
responses ranging from apoptosis (cell death) to opsonization 
(antigen/antibody binding) (1). It has been widely recognized 
that the complement system plays a critical role in the 
pathogenesis of a variety of chronic human diseases, 
including autoimmune diseases, atherosclerosis, the vascular 
complications of diabetes, complement-mediated hemolytic 
anemia, and infertility in both males and females (2-6). 
Recent evidence suggests that the complement system is also 
involved in the pathogenesis of a variety of liver disorders, 
which will be discussed in this review.    
 
Complement system  
 
Complement activation 
The complement system consists of about 30 soluble and 

membrane bound proteins, and is activated by 3 distinct 
pathways either on pathogen surface or in plasma (Figure 1). 
Activation of these pathways depends on different molecules 
for their initiation. The classical pathway is triggered by 
antigen-bound antibody molecules and is initiated by the 
binding of a specific part of the antibody molecule (Fc) to the 
C1 component (7). The alternative pathway is a humoral 
component of the immune system’s natural defense against 
infections and is activated by cleavage of C3 and then C5 
(Figure 1). The mannose-binding lectin (MBL) pathway is 
initiated when the plasma MBL protein forms a complex 
with the MBL-associated proteases 1 and 2 (MASP1 and 
MASP2). MASP1 and MASP2 then bind to arrays of 
mannose groups on the surface of a bacterial cell (8) (Figure 
1).  

All three activation pathways converge at the level of C3 
to form the C5 convertase such as the C4bC2aC3b from 
classical and MBL pathways and (C3b)2FBb from alternative 
pathway (Figure 1). The C5 convertase then cleaves C5 to 
form C5b and C5a. Importantly, thrombin has been recently 
identified to act as a C5 convertase in C3 deficient mice, 
which can cleave C5 to form C5b and C5a. Thus, thrombin 
generated from clotting pathway is an additional complement 
activation pathway, which provides a molecular basis linking 
clotting pathway to complement activation pathway (9). 
Terminal complement activation is induced initially by C5b, 
and followed by the sequential condensation of C6 to form C5b6, 
and then C7, C8, and C9. Polymerization of C9 bound to the 
C5b-8 complex forms the membrane attack complex (MAC), an 
end product of complement activation pathway. The MAC 
forms a lytic pore in the lipid bilayer membrane that allows the 
free passage of solutes and water across the membrane and 
destroys membrane integrity, followed by killing the foreign 
pathogens and cells (10) (Figure 1). 

By-products of complement activation that bridge innate 
and adaptive immunity are critical mediators of the host 
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defense against infection, and of the disposal of immune 
complexes and products of inflammatory injury (8). For 
example, fragments of C3 and C4 opsonize old red blood 
cells, bacteria and immunoglobulin aggregates, which are 
then recognized by phagocytic cells for digestion and 
clearance (11). The role of complement in the clearance of 
immune-complexes is highlighted by the strong association 
between immune complex disease and inherited deficiencies 
of certain classical pathway components (C1q, C1r, C1s, C4, 
C2 and C3) (12). Also, C3b and C4b bound to immune 
complexes potentiate antibody response and enhance 
immunologic memory (11). Small complement fragments 
C3a, C4a and C5a act on specific receptors to produce local 
inflammatory responses. These fragments are termed as 
anaphylatoxins because they can cause mast cell 
degranulation with the release of histamine and other 
mediators that increase vascular permeability and induce 
smooth muscle contraction (13). Of the three, C5a is the most 
stable and has the highest specific biological activity, which 
is gradually being appreciated in different diseases including 

liver diseases. The role of complement components and their 
by-products in the pathogenesis of liver diseases will be 
discussed below.  
 
Complement regulation 
All complement components are activated spontaneously at a 
low rate in plasma, also called as tick over complement 
activation. This tick over activation of complement occurring 
in vivo presents a serious threat to host cells. However, host 
cells express several plasma and membrane proteins that can 
inhibit self complement activation thereby preventing self 
damage (14). So far at least 10 plasma or membrane-bound 
proteins have been identified to restrict activation of 
complement and subsequently prevent the catastrophic effect of 
complement activation on “self” cells. This complement 
regulatory system generally acts on the inherent instability of 
activation pathway enzymes and reduces the production of 
activated complement. The soluble plasma complement 
regulators include: 1) C1 inhibitor that regulates C1; 2) factors H 
and I that regulate the alternative pathway; 3) C4 binding protein 
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Figure 1. Complement activation and regulation. There are three complement activation pathways (classical, alternative, and MBL 
pathways). Black arrows indicate the direction of the activation pathway or cleavage products of complements. Red arrows demonstrate the 
cleavage reaction via enzymatic factors or proteases. Boxed words in red are the complement regulatory proteins that act on the specific 
stages of activation pathways and inhibit the complement activation. C1INH, C1 inhibitor; MCP, membrane cofactor protein; CR,
complement receptor; C4bp, C4 binding protein; FB (D, H, I), Factor B (D, H, I). 
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(C4bp) that catalyses the cleavage of C4b by factor I; 4) 
S-protein, clusterin, and serum lipids that compete with 
membrane lipids for reacting with nascent C5b67 (7). Moreover, 
3 membrane proteins that are expressed on the surface of almost 
all cell types have been shown to inhibit autolgous complement 
activation, thereby protecting self cells from consequent 
complement-mediated injury (7). These regulators include decay 
accelerating factor (DAF or CD55), membrane cofactor protein 
(MCP or CD46), and the membrane inhibitor of reactive lysis 
(MIRL or CD59). DAF inactivates the C3 (C4b2a and C3bBb) 
and C5 (C4b2a3b and C3bBb3b) convertases by accelerating 
the decay of these enzymes (15-17). MCP acts as a cofactor 
for the cleavage of (non-convertase-associated) self cell- 
bound C4b and C3b by the serum protease factor I (18). 
CD59 restricts MAC formation by preventing C9 incorpo- 
ration and polymerization (19) (Figure 1).  
 
Biosynthesis of plasma complements and 
expression of complement receptors in the liver 
 
Synthesis of plasma complements in the liver 
The liver (mainly hepatocytes) is responsible for biosynthesis 
of 90% of plasma complement components and their soluble 
regulators, including the classical (C1r/s, C2, C4, C4bp), 
alternative (C3, factor B), lectin (MBL, MASP1-3, Map19), 
terminal (C5, C6, C8, C9) pathways of the complement 
system, and soluble regulators (factors I, H, and C1 inhibitor) 
(Table 1) (20). Many other types of cells including immune 
cells and endothelial cells also synthesize these components, 
but their contributions to plasma levels appear to be minor 
compared to hepatocytes.  

In contrast, several other plasma components including 
C1, factor D, properdin, and C7 are mainly produced outside 
of the liver. C1 includes three subcomponents including C1q, 
C1r, and C1s. Many cell types including epithelial cells, 
fibroblasts, and cells of the monocyte/macrophage lineage 
can produce C1q (21, 22). Among these cells, monocytes can 
produce all three C1 subcomponents to form intact C1, and 
are likely the major source for plasma C1. Hepatocytes only 
produce C1r and C1s but not C1q, therefore, intact C1 can 
not assemble in hepatocytes. The biological significance of 
C1r and C1s synthesized in hepatocytes is not clear. Plasma 
factor D is mainly produced by adipocyte (23, 24) while 

macrophages and monocytes are primarily responsible for 
production of plasma properdin (25) and C7 (26). Finally, 
soluble complement regulatory proteins are produced by 
hepatocytes (20) while membrane bound complement 
components including CD59, CD35, CD46 and CD55 are 
expressed ubiquitously in all tissues (27-29).  

Analyses of promoter regions of the complement 
components revealed that many of them are controlled by 
several liver specific transcription factors (such as hepatocyte 
nuclear factors [HNFs] and C/EBP) (30, 31), which may 
explain why hepatocytes are the major source to synthesize 
these proteins. For example, disruption of the HNF-1α gene 
abolished or significantly decreased expression of C5, C8, 
and C9 mRNA in the liver (30). Transcriptional regulation of 
complement factor B is controlled by HNF4 (31) while C4BP 
is regulated by HNF3 and nuclear factor-1 (32). In addition, 
expression of many complement components in the liver is 
significantly elevated during acute phase response and 
induced by proinflammatory cytokines such as IL-6, IL-1, 
TNF-α and IFN-γ (33-35). 
 
Complement receptors in the liver 
Several complement receptors have been detected in liver 
cells and contribute to a variety of functions in the liver 
(Table 2). The liver is composed of hepatocytes, Kupffer 
cells, stellate cells, and sinusoidal endothelial cells. In normal 
liver, expression of C5aR was not detected on the surface of 
hepatocytes, but can be induced after lipopolysaccharide 
challenge or after partial hepatectomy via an IL-6-dependent 
mechanism (36-38). The functions of de novo expression of 
C5aR on hepatocytes through interaction with C5a include: 1) 
stimulation of glucose release; 2) induction of acute phase 
protein synthesis; 3) stimulation of hepatocyte proliferation 
(36-40).  

In contrast to hepatocytes, normal Kupffer cells express 
complement receptors for both C3 and C5a at high levels (40, 
41). Three types of C3-receptors have been detected on the 
surface of Kupffer cells, including CR1 (C3b-receptor; 
CD35), CR3 (iC3b- and β-glucan-receptor), and CR4 (iC3b- 
receptor; CD11c/CD18). Through interaction with these 
receptors, Kuppfer cells contribute to the blood clearance of 
C3-opsonized immune complexes, therapeutic β-glucan 
polysaccharides, IgM-opsonized E and β-glucans (42, 43). 
Recently, Helmy et al. identified a novel complement receptor 

Table 1. Expression of complements and regulators in hepatocytes 

Complements regulators Mainly synthesized or expressed 
in hepatocytes  

References Mainly synthesized or expressed 
in other cells  

References 

Classical  C1r/s, C2, C4, C4bp  20, 81  C1q 20-22   
Alternative  C3, B  20, 81, 82 D, P 20, 23-25  
Lectin  MBL, MASP1, 2, 3, Map19 80, 83   
Terminal C5, C6, C8, C9 20, 81 C7 20, 26  
Regulators (in plasma) I, H, C1INH 20   
Regulators (membrane bound)   CD59, CD46, CD55, CD35 27-29 
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of the immunoglobulin superfamily CRIg on Kupffer cells 
and demonstrated that CRIg is required for efficient binding 
and phagocytosis of complement C3-opsonized particles 
through binding to complement fragments C3b and iC3b (44). 
Activation of C5aR by C5a is able to stimulate Kupffer cells 
to produce prostanoid and synthesize proinflammatory 
cytokines (36) and participates in the clearance of red blood 
cells (45). High levels of C5aR were also detected on the 
surface of stellate cells (46) that are known to play a key role 
in the induction of liver fibrosis. Activation of C5aR by C5a 
has been shown to upregulate fibronectin expression and 
induce prostanoid release in hepatic stellate cells (46, 47), 
which may contribute to the involvement of C5a in liver 
fibrosis (see below). Finally, sinusoidal endothelial cells also 
express C5aR at low levels, and the function of C5aR on 
these cells appears to be minor (47, 48).  
 
Role of complements in liver diseases 
 
Liver fibrosis 
C5 and C5aR were recently demonstrated to exhibit a critical 
role in the pathogenesis of liver fibrosis by Hillebrandt et al 
(49). In this study, through genetic mapping in experimental 
mouse intercrosses between fibrosis-susceptible BALB/cJ 
and fibrosis-resistant A/J inbred strain, the 44.7 Mb region on 
mouse chromosome 2 was found to contain a gene that is 
responsible for liver fibrosis (49). The fibrosis-resistant A/J 
inbred strain carries a 2-bp deletion in the C5 gene in exon 6 
within the 44.7 Mb region of mouse chromosome 2, which is 
responsible for the C5 deficiency in this strain. Therefore, C5 
was considered as a strong candidate gene for promoting 
liver fibrosis. The several other inbred mouse strains that are 
C5 deficient with a 2-bp deletion in the C5 gene have 
significantly lower stages of fibrosis after CCl4 treatment 
than did mouse strains with C5 sufficiency. The prediction 
that C5 is a strong candidate gene was further supported by 
several lines of evidence (49). Firstly, introduction of C5 
deficiency to the C5 sufficient strain by multiple backcrosses 
resulted in the fibrosis-resistant phenotype. Secondly, 
transgenic introduction of C5 gene into C5 deficient inbred 
strain resulted in the fibrosis-susceptible phenotype. Finally, 

blockade of C5 receptor 1 (C5aR1) attenuates liver fibrosis in 
mice. Consistently, genetic analyses suggest that human C5 
gene variants are also associated with liver fibrosis in 
patients with chronic HCV infection (49). However, the 
molecular mechanisms responsible for the involvement of 
C5aR1 in liver fibrosis remain obscure.  

Immunocytochemistry and confocal laser scanning 
microscopy analyses showed that expression of C5aR1 was 
detected on the hepatic stellate cells at high levels and 
increased significantly in these cells during trans- 
differentiation to myofibroblasts in culture (49). Stimulation 
of C5aR1 by C5a can upregulate fibronectin expression and 
induce prostanoid release in hepatic stellate cells (40, 46), 
which may contribute to the involvement of C5aR1 in liver 
fibrosis. Further studies are required to investigate the 
molecular mechanisms underlying the C5aR1 contribution to 
liver fibrosis.   
 
Liver regeneration 
Complement has also been involved in liver regeneration 
after partial hepatectomy or after toxic injury (50-52). By 
using a murine model of partial hepatectomy, Strey et al. 
demonstrated that the anaphylatoxins C3a and C5a are 
essential for liver regeneration (51). C3 or C5 deficiency 
results in diminished liver regeneration, accompanied by 
transient or fatal liver failure after partial hepatectomy (51). 
Liver regeneration was severely impaired in C3 and C5 
double knockout mice, which was restored after simultaneous 
reconstitution with C3a and C5a (51). Furthermore, they 
demonstrated that 1) C5aR blockage disrupted liver 
regeneration; 2) C5aR stimulation was required for intra- 
hepatic TNF-α and IL-6 release; 3) C5aR engagement 
recruited NF-κB and STAT-3 dependent pathways in the 
regenerating liver; 4) C3 was required for normal 
STAT-3/NF-κB activation in liver regeneration (51). A series 
of similar experiments were also performed to address the 
role of C3 and C5 in liver regeneration after CCl4-induced 
liver damage (50, 52). C5-deficient mice developed severely 
defective liver regeneration and persistent parenchymal 
necrosis after exposure to CCl4 and also showed a marked 
delay in the re-entry of hepatocytes into the cell cycle (S 

Table 2. Expression of complement receptors in the liver 
 
Liver cell types Complement receptors Functions References 

Hepatocytes C5aR Induction of acute phase response, glucose release, 
hepatocyte proliferation 

36-40    

Kupffer cells C5aR  Prostanoid release, synthesis of proinflammatory cytokines, 
clearance of red cells 

36, 40, 44, 45  

 CR1, CR3, and CR4, CRIg Clearance of C3-opsonized immune complexes, β-glucan 
polysaccharides, IgM-opsonized E and β-glucans 

41, 43, 44  

Stellate cells C5aR Upregulation of fibronectin expression, 
induction of prostanoid release and liver fibrosis 

40, 46, 49   

Endothelial cells C5aR (weak expression) Minimal effect 7, 20, 26, 40, 48 
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phase) and diminished mitotic activity (50). Administration 
of murine C5 or C5a restored hepatocyte regeneration in C5 
deficient mice while blockage of the C5aR abrogated the 
ability of hepatocytes to proliferate in response to liver injury 
(50). Disruption of the C3 gene delayed liver regeneration 
post CCl4 injection, which can be restored by C3a 
reconstitution (52). C3a receptor-deficient mice also showed 
impaired liver regeneration (52). Taken together, the results 
from these studies suggest that both C3 and C5 participate in 
liver regeneration after liver injury or loss of tissue (50-52) 
via enhancing the priming signals STAT-3 and NF-κB, the 
two important signals for the initiation of the regenerating 
response (53). 
 
Viral hepatitis 
More than half a billion people worldwide are chronically 
infected with the hepatitis B virus (HBV) or hepatitis C virus 
(HCV), which is a leading cause of liver injury, fibrosis, and 
cirrhosis. The mechanisms responsible for HBV and HCV 
persistence and disease pathogenesis remain poorly 
understood, and the interaction of hepatitis viruses and the 
host immune system is likely involved (54). Although the 
complement system has been shown to contribute to the 
protection of host from virus infection (55, 56), the 
involvement of complement in viral hepatitis has not been 
well documented. It was reported that cold activation of 
complement (loss of hemolytic activity in sera during storage 
at low temperature) was observed in the patients with chronic 
HCV infection and contributed to HCV-associated liver 
damage and was useful for monitoring response to interferon 
therapy in these patients (57, 58). However, the reason why 
HCV infection results in the high titer of cold complement 
activation and its role in pathogensis of HCV infection still 
remains to be addressed. A recent study demonstrated that an 
increased prevalence of anti-C1q antibodies was present in 
HCV-infected patients and anti-C1q antibodies were 
associated with low complement levels (59). The anti-C1q 
antibodies have been shown to be associated strongly with 
immune complex diseases, most prominently with hypo- 
complementaemic urticarial vasculitis syndrome, systemic 
lupus erythmatosus, diffuse proliferative lupus nephritis, and 
severe rheumatoid arthritis (60). Thus, the high levels of 
anti-C1q antibodies in HCV patients suggest that immune 
complex may also contribute to the pathogenesis of HCV- 
associated liver injury. Another autoantibody against asialo- 
glycoprotein receptor that is expressed on hepatocytes and 
mediates clearance of desialylated serum proteins is also 
involved in the pathogenesis of hepatitis virus-induced liver 
disease through disrupting clearance of desialylated proteins 
and activation of the complement-mediated cytolysis (61, 62). 
Immunohistochemistry analyses showed that MAC was 
detected in hepatocytes surrounding necrotic areas in the 
patients with fulminant and acute hepatitis (63), further 
supporting that the complement system is activated and is 
involved in the pathogenesis of HCV-associated liver disease. 

MBL has been shown to be an important component of 
innate immunity and has an important role in host defense 
against infection of bacteria, viruses, and fungi. Genetic 

polymorphisms are one of the most important factors to 
determine plasma levels of MBL. Individuals possessing 
variant alleles of MBL had low plasma MBL levels and 
showed a dose-dependent correlation with cirrhosis and 
hepatocellular carcinoma in progressed HBV carries (61, 64), 
and likely became viral persistence after HBV infection (65). 
Moreover, Chong et al. also demonstrated that MBL bound 
HBsAg in vitro in a dose- and calcium-dependent and 
mannan-inhibitable manner and this binding also enhanced 
C4 deposition (63). Finally, chronic HBV and HCV infection 
resulted in a decrease of serum MBL levels, which was likely 
due to impairment of MBL production (62). Together, these 
findings suggest that patients with variant alleles of MBL 
have low levels of plasma MBL and are associated with 
progression of liver disease and viral persistence after HBV 
infection.  
 
Alcoholic liver injury 
It has been known for many years that serum levels of 
complement components are lower in alcoholic cirrhotic 
patients than normal healthy individuals, which may be 
associated with high risk of bacterial and fungal infections in 
these patients (66). Recent studies in animal models suggest 
that complements are activated in alcoholic liver disease and 
contribute to its pathogenesis. Both endotoxin and oxidative 
stress have been implicated in complement activation and 
disposition in alcoholic liver disease (67). Feeding mice and 
rats with ethanol diet resulted in increased disposition of C1, 
C3, C8, and C9 but decreased expression of complement 
regulators Crry and CD59 in the liver (68). C3-deficient mice 
are resistant to ethanol-induced hepatic steatosis, elevation of 
liver malondialdehyde level, and serum alanine amino- 
transferase activity (69) while C6-deficient mice are more 
susceptible to ethanol-induced hepatic injury and steatosis 
(68). These studies suggest that C3 contributes to the 
pathogensis of alcoholic disease while the terminal 
complement component C6 provides a protective function 
against alcohol-induced liver injury. However, clinical data 
showed that activation of complement was not different in 
acute alcoholic hepatitis patients compared with normal 
healthy control groups and there was no relationship between 
clinical or laboratory indicators of disease severity and 
complement activation in acute alcoholic hepatitis, 
suggesting that complement activation may not contribute to 
the clinical and histological features of human alcoholic liver 
disease (70). Extensive studies are needed to define precise 
roles of the complement system in human alcoholic liver 
disease.  
 
Liver ischemia/reperfusion injury and transplantation 
Liver ischemia/reperfusion (I/R) injury occurs during liver 
surgery and transplantation and is triggered by a complex 
inflammatory response following temporary deprivation of 
blood supply. Two distinct phases of hepatic I/R have been 
identified, including the initial and later phases of injury. The 
initial phase involves Kupffer cell activation and production 
of oxidative stress. The later phase is characterized by 
massive neutrophil infiltration (71). The involvement of 
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complement activation in liver I/R injury in a rat model was 
first reported by Jaeschke and colleagues (72). In this study, 
they demonstrated that depletion of serum complement by 
treatment with cobra venom factor before ischemia prevented 
Kupffer cell-induced oxidant stress, accumulation of 
polymorphonuclear leukocyte (PMNs) in the liver, and 
hepatic injury caused by I/R (72). Furthermore, treatment 
with C5aR antagonist reduced total hepatic I/R-induced 
mortality and ameliorated the partial hepatic I/R-induced 
liver injury and accumulation of PMNs in the liver (73). 
Blocking complement activation with sCR1 or C1 inhibitor 
also significantly ameliorated necrosis and inflammation 
during hepatic I/R injury and liver transplantation in rodent 
models (74-76). Clinical data suggest the involvement of 
complements in liver I/R injury during human liver 
transplantation. MAC deposition was found to be elevated in 
the postoperative specimens of patients with liver 
transplantation, and correlated positively with the number of 
leukocytes and platelets accumulating within the graft, and 
with an increase in postoperative aspartate aminotransferase 
levels in the serum (77). Complement activation was also 
reported in the human livers after partial hepatectomy and 
was likely caused by I/R via the classical pathway (76). 
Recently, Schmeding et al. showed that elevation of C4d 
deposition was detected in 68% of liver allograft biopsies 
with acute rejection while it was detected in only 12% of 
liver allografts with HCV recurrence and 7% of protocol 
biopsies from the subjects without rejection or HCV 
recurrence (78). This suggests that activation of complement 
may contribute to rejection after liver transplantation (78). 
Moreover, complement activation may play an important role 
in the rejection of hepatic xenotransplantation (79).  

In contrast to induction of the detrimental effect in liver 
injury, activation of complement may play a beneficial effect 
in preventing infection after liver transplantation. 
Transplantation of patients with donor livers carrying MBL 
variant alleles resulted in a significant decrease of serum 
MBL levels, and was associated with a significantly 
increased incidence of infections after liver transplantation, 
suggesting that activation of complement is an important 
factor in controlling infection after liver transplantation (80).  
 
Summary  
 
The liver is the major site for biosynthesis of 80-90% plasma 
complement components, and expresses a variety of 
complement receptors. The complement and complement 
receptors appear to be involved in liver injury and repair. 
However, the underlying mechanisms remain poorly 
understood, such as how C5aR contributes to liver fibrosis 
and how C3 and C5 contribute to liver regeneration. 
Moreover, although several studies have been carried out in 
animal models, the role of complement in human liver 
disease has been poorly documented and investigated. 
Further detailed studies about the potential contribution of 
complements to the pathogenesis of human liver diseases are 
urgently needed to answer these questions. 
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