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Protein degradation through the ubiquitin-proteasome system is the major pathway of non-lysosomal proteolysis of 
intracellular proteins. It plays important roles in a variety of fundamental cellular processes such as regulation of 
cell cycle progression, division, development and differentiation, apoptosis, cell trafficking, and modulation of the 
immune and inflammatory responses. The central element of this system is the covalent linkage of ubiquitin to 
targeted proteins, which are then recognized by the 26S proteasome, an adenosine triphosphate-dependent, 
multi-catalytic protease. Damaged, oxidized, or misfolded proteins as well as regulatory proteins that control many 
critical cellular functions are among the targets of this degradation process. Aberration of this system leads to the 
dysregulation of cellular homeostasis and the development of multiple diseases. In this review, we described the 
basic biochemistry and molecular biology of the ubiquitin-proteasome system, and its complex role in the 
development of inflammatory and autoimmune diseases. In addition, therapies and potential therapeutic targets 
related to the ubiquitin-proteasome system are discussed as well. Cellular & Molecular Immunology. 2006;3(4): 
255-261. 
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Introduction 
 
The 2004 Nobel Prize in Chemistry was awarded to a group 
of scientists for the discovery of the function of ubiquitin 
(1-4). Ubiquitin is part of the ubiquitin-proteasome system 
(UPS) that is responsible for the degradation of more than 
80% of normal and abnormal intracellular proteins. At the 
heart of this system is the 26S proteasome, a dynamic 
multisubunit proteolytic complex with a molecular weight of 
700 kD that, in eukaryotes, functions as the key enzyme for 
non-lysosomal protein degradation. Proteasomal degradation 
removes denatured, misfolded, damaged or improperly 
translated proteins from cells and as well as regulating the 
level of proteins such as cyclins and transcription factors. 
The products resulting from this enzymatic degradation have 
different sequences, lengths and biological functions (5). It 

has been shown that this is a highly regulated, tightly 
controlled, yet complex system that is central to normal 
cellular homeostasis including cell cycle regulation, DNA 
repair, sodium channel function, regulation of immune and 
inflammatory responses and cellular response to stress (6-8). 
Derangements of the UPS can lead to many disorders, 
including malignancies, neurodegenerative diseases and 
possible systemic autoimmunity (9). Better understanding of 
the UPS process and identification of the components 
involved in the degradation of key regulatory proteins has 
lead to the development of mechanism-based therapeutics in 
various diseases (10-12). A growing body of evidence 
suggests that targeting the proteasomal pathway is an 
attractive approach to treat inflammatory and autoimmune 
diseases (13-15). 
 
Ubiquitin and ubiquitination 
 
Ubiquitin is a 76-residue protein that is highly evolutionarily 
conserved in all eukaryotes (16, 17). Selective attachment of 
ubiquitin to proteins is the initial signal for targeted protein 
degradation. The linkage of ubiquitin to the target protein is 
through a branched isopeptide bond between the ubiquitin 
carboxyl-terminal glycine and an internal lysine on the 
substrate. Additional ubiquitin moieties are sequentially 
added to each other to form a polyubiquitin chain that 
functions as the recognition signal for a downstream 
proteasome in the UPS. Modification of target proteins by 
ubiquitin or an ubiquitin-like protein remodels the surface of 
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target proteins, affecting their stability, activity, interactions 
with other proteins, and subcellular localization (18, 19).  

The ubiquitination of protein is carried out in three 
sequential steps involving three enzymes designated E1, E2 
and E3 (Figure 1). E1 and E2 enzymes prepare the ubiquitin 
chain that is then attached to proteins by the E3 enzyme. 
Ubiquination begins with the adenosine triphosphate (ATP)- 
dependent activation of ubiquitin by the ubiquitin-activating 
enzyme E1. Ubiquitin is attached to an internal E1 Cys 
residue via an intermediate thiol ester generating E1-S~ 
ubiquitin. Ubiquitin is then transferred to one of several 
forms of E2, or ubiquitin conjugating enzyme. In step three, 
the addition of ubiquitin to the protein substrate is catalyzed 
by one of many E3s - a diverse group of proteins with distinct 
motifs (20). 

The high specificity and selectivity of the UPS system 
lies in the diversity of different ubiquitin-protein ligase E3s 
that can recognize a specific substrate (7). One of the most 
important recognition patterns is a “destabilizing” N-terminal 
amino acid such as arginine and lysine. These unique 
N-terminal residues can determine the half-life of an 
intracellular protein and has been defined as the N-end rule. 
In addition to its substrates, the activity of the ubiquitin 
system itself can be modulated by numerous factors such as 
thyroid hormones, glucocorticoid steroids, cytokines, and 
proteins expressed in malignant cells such as proteolysis- 
inducing factor (PIF). Interestingly, several factors, including 
interferon γ (IFN-γ) not only regulate the modification of 
substrate, such as the IκB family of proteins, but also modify 
the components of the enzymatic machinery of the ubiquitin 
system, such as the E3 ubiquitin ligase Itch, and the 

proteasome complex (21). Similarly, the protein kinase C and 
tyrosine kinase pathways are involved in both the 
modification of UPS substrates and phosphorylation of E1 
and E2, thereby ensuring their activities are carried out 
efficiently. 
 
Proteasome 
 
20S proteasome 
The ubiquinated substrates targeted for proteolysis are 
recognized by proteasomes – the central element of the UPS. 
In the proteasome complex, the core protease (CP) is the 
barrel-shaped 20S complex (20S proteasome) (Figure 2). It 
consists of four stacked rings each with 7 distinct subunits, 
stacked one on top of each other, that are responsible for the 
proteolytic activity of the proteasome. There are two identical 
outer α rings and two inner β rings. The outer 2 α-rings have 
no known function, whereas the β rings contain multiple 
catalytic sites. In eukaryotes, two of these sites on the β rings 
are chymotrypsin-like (CTL), two of these sites are 
trypsin-like (TL) and two are caspase-like. Essentially all 
known synthetic and natural proteasome inhibitors act on the 
CTL sites (22).  
 
26S proteasome 
The 26S proteasome is composed of 2 subcomplexes – one 
20S proteasome and two 19S regulatory particles (RP, also 
known as PA700) – which cap the ends of the 20S complex 
(Figure 2). The 19S RP controls the recognition of the 
ubiquinated proteins, the ATP-dependent unfolding and the 

 
Figure 1. Schematic of the ubiquitin-proteasome system. Ubiquitin (Ub) is added sequentially to targeted substrates in three sequential 
steps requiring three enzymes, E1, E2 and E3. Step 1: Ubiquination begins with the adenosine triphosphate (ATP)-dependent activation of 
ubiquitin by the ubiquitin-activating enzyme E1; Step 2: Ubiquitin is then transferred to one of several forms of E2, or ubiquitin conjugating 
enzyme; Step 3: The addition of ubiquitin to the protein substrate is catalyzed by one of many E3s. Polyubiquinated proteins are recognized 
and degraded by the 26S proteasome. The cleavage produces small peptides and reusable free ubiquitin. 
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opening of the channel in the 20S proteasome that allows 
entry into the proteolytic chamber.  
 
Immunoproteasome 
PA28 is an activator of the 20S proteasome and an alternative 
RP. It is composed of two homologous subunits (α and β) 
and a separate but related protein termed PA28γ which is also 
known as the Ki antigen (23). PA28 associates with the 20S 
proteasome to form a football-like structure, hybrid 
proteasome (19S RP-20S proteasome-PA28) - a complex 
referred to as an immunoproteasome due to its enhanced 
capability to generate major histocompatibility complex 
(MHC) class I-binding peptides. The expression of PA28 is 
inducible by IFN-γ, which is different from its constitutively 
expressed counterparts α and β subunits in 26S proteasome. 
More recently, it was noted that IFN-γ induces the expression 
of PA28-α and PA28-β, but not the Ki antigen in human cells, 
which indicates the PA28 family of proteins may have 
distinct biological functions (24). 

After ubiquinated proteins have been degraded within the 
CP, the 19S RP removes the polyubiquitin tag from the 
substrate protein and generates free and reusable ubiquitin. 
Cleaved peptides generated by proteasome degradation can 
have different fates. Some are further degraded by cytosolic 
peptidases. Some can be transported into the endoplasmic 
reticulum (ER) for binding to MHC class I molecules and 
cell-surface expression. This latter subset of antigenic 
peptides may arise from hybrid proteasome that generates 
peptides trimmed to properly fit the MHC class I binding 

groves. In this regard, immunoproteasomes have unique 
value during immune responses.  
 
UPS and inflammatory and autoimmune diseases 
 
The UPS is responsible for the majority of eukaryotic 
intracellular protein turnover (1, 2). Coordinated UPS 
function is essential to variety of cellular processes (17, 25). 
Aberration of the system can lead to the dysregulation of 
cellular homeostasis and the development of multiple 
diseases such as malignancy (12, 26-35), neurodegenerative 
diseases (36), and cardiovascular diseases (37-39). This 
review, however, will focus on the role of UPS in the 
immune system and the development of inflammatory and 
autoimmune diseases. 
 
UPS and the immune system 
A prime example for the involvement of UPS in the immune 
system is MHC class I antigen processing by antigen- 
presenting cells (APC) (40). It has been well established that 
the majority of peptide antigens presented on MHC I 
molecules are generated by the UPS (41). As previously 
mentioned, PA28, a ring-shaped 11S multimeric complex, 
mediates this line of function within the UPS (42). It has 
been demonstrated that PA28 binds to the ends of 20S 
proteasome and dramatically enhances its capability to 
hydrolyze oligopeptides, which leads to the generation of 
small oligopeptides suitable for MHC I presentation (43, 44). 
More specifically, the proteasome is responsible for 

) )  
 

Figure 2. Schematic of the 20S core protease (CP) and the 26S proteasome. The 26S proteasome is composed of the barrel-shaped 20S 
complex with a molecular weight of about 700 kD capped by two 19S regulatory particles (RP). The molecular weight for this 26S 
proteasome is about 2000 kD. The 19S regulatory particle recognizes the polyubiquitin tag on targeted substrates and unfolds the substrate to 
enter the proteolytic chamber. The 20S core particle contains the catalytic sites responsible for the proteolysis. 
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generating the precise C termini of many MHC-presented 
peptides, whereas aminopeptidases in the cytoplasm and 
endoplasmic reticulum can trim the N terminus of the 
extended peptides to their proper size (45, 46). Interestingly, 
IFN-γ is a key pleiotropic regulatory cytokine within this 
context (47). It controls an inducible proteolytic cascade, 
which consists of PA28 and other inducible proteasome 
subunits, and the activity of aminopeptidases, which lead to 
increased peptide production for MHC I presentation. In 
addition, IFN-γ also decreases peptide destruction by 
down-regulating the expression of a metalloproteinase, 
thimet oligopeptidase, that actively destroys many antigenic 
peptides (48, 49).  

UPS plays a significant role in the regulation of both T 
cell receptor (TCR) and costimulatory CD28 signaling 
through the action of ubiquitin ligases of the Cbl family (50). 
CD28 costimulation results in the ubiquitination and 
degradation of Cbl-β, which eliminates the negative 
regulators and allows the expression of proinflammatory 
cytokines and their receptors. However, the most important 
link between the UPS and inflammation is related to NF-κB. 
NF-κB is a master regulator of many inflammatory cytokine 
genes, and its activation is mediated through the UPS. NF-κB 
is actively inhibited when bound to IκB. NF-κB activation 
follows the degradation of IκB, which is dependent on 
ubiquination of IκB followed by proteasomal degradation. 
Hence, alterations in the UPS would have profound effects 
on immune responses including the regulation of an array of 
inflammatory cytokines. In addition, proteasome has been 
shown to regulate inflammatory pathway by controlling the 
function of macrophages (51). 

It has also been reported that the deubiquitinating enzyme 
CYLD positively regulates proximal T cell receptor signaling 
in thymocytes by selectively binding to and deubiquitinating 
the active form of the kinase Lck. Due to cell-autonomous 
defect in T cell development, CYLD-deficient mice had 
substantially fewer mature CD4+ and CD8+ single-positive 
thymocytes and peripheral T cells (52). 
 
Autoimmunity to components of UPS 
Autoantibodies to the α and β subunits of 20S proteasome, 
PA28 and other components of the UPS have been detected 
in systemic lupus erythematosus (SLE), primary Sjögren’s 
syndrome, myositis and other autoimmune diseases (53, 54). 
Autoantibodies to Ki antigen were detected in 6-21% of 
patients with SLE. The antibodies were associated with 
certain clinical features such as sicca syndrome [xerostomia 
(dry mouth), xerophthalmia (dry eyes), and lymphocytic 
infiltration of the exocrine glands], persistent arthritis, 
pericarditis, positive anti-Sm antibody and skin involvement 
in lupus (54, 55). The functional relevance of these auto- 
antibodies remains to be determined. However, it has been 
shown that autoantibodies against 20S proteasome have the 
capability to block proteasome activation by PA28 in vitro, 
which indicates that autoantibodies may have a regulatory 
role in proteasome function, and antibody targeting of the 
interaction between proteasome subunits represents a novel 

mechanism of proteasome inhibition (56, 57). 
Increased levels of circulating proteasomes has also been 

observed in autoimmune myositis, SLE, primary Sjögren’s 
syndrome, rheumatoid arthritis (RA) and other autoimmune 
diseases (58). In addition, circulating proteasome levels 
correlate with disease activity in RA and SLE patients. Hence, 
it has the potential to serve as a biomarker for cellular 
damage and disease activity in these patients (57).  
 
UPS and inflammatory and autoimmune diseases 
The UPS is involved in the development of inflammatory and 
autoimmune diseases through multiple pathways, including 
MHC-mediated antigen presentation, cytokine and cell cycle 
regulation, and apoptosis (59).  
   1) Inflammatory arthritis. NF-κB regulates multiple critical 
cytokines involved in the pathogenesis of RA (60, 61). In the 
peptoglycan/polysaccharide-induced inflammatory arthritis 
model, a proteasome inhibitor improved the arthritis score by 
suppressing the activation of NF-κB, reducing the expression 
of cell adhesion molecules and IL-6. In addition, proteasome 
inhibition may regulate the development of inflammatory 
arthritis by controlling angiogenesis (62). 

2) Psoriasis. Psoriasis is one of the prototypical T 
cell-mediated diseases, and its development is related to the 
activation of NF-κB. Administration of a proteasome 
inhibitor reduced the size of psoriatic lesions in human skin 
explants grafted onto mice. The treatment also resulted in 
reduced superantigen-mediated T-cell activation, attenuated 
cell adhesion molecule expression, decreased expression of 
T-cell activation markers that were significantly elevated 
during the disease process (63). 

3) Allergy and asthma. Abnormal activation of type 2 
helper T cells (Th2) results in asthmatic and allergic 
symptoms (64). E3 ubiquitin ligase Itch plays a critical role 
in maintaining immune tolerance mediated through Th2 cells 
both in vitro and in vivo. Itch deficient mice failed to block 
the development of airway inflammation in an allergic model 
(65). Consistent with these findings, encouraging therapeutic 
effects were observed in a rodent model of allergen-induced 
asthma (66). 

4) Other inflammatory and autoimmune diseases. Sero- 
negative spondyloarthropathies (SpA) are a group of diseases 
characterized by, but not limited to, axial joint inflammation. 
Ankylosing spondylitis (AS) is the prototypical SpA. Most 
patients with AS carry the MHC class I HLA-B27 gene, and 
so much research effort has been directed at understanding 
the role of this gene in the disease pathogenesis. Much 
interest has been focused on determining the origin and 
nature of the peptides being presented by HLA-B27 and the 
cell surface expression of misfolded HLA-B27, two areas in 
which the UPS is known to play a role. The UPS is involved 
in the regulation or induction of apoptosis. Apoptosis has 
been implicated in both experimental models and clinical 
SLE. In mature, activated lymphocytes, the proteasome 
inhibitor lactacystin induces DNA fragmentation and 
apoptosis in a dose-dependent fashion, indicating that 
proteasome suppresses apoptosis in these cells. Altered 
clearance of autoantigens is thought to allow for targeting by 
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the immune system and the development of autoimmunity. 
The involvement of UPS in regulating the levels of Ku70 and 
other autoantigens has been reported (67-69). 
 
Proteasome inhibitors as novel therapeutic 
agents 
 
An array of synthetic and natural inhibitors of the proteolytic 
sites on the 20S proteasome have been developed both as 
research tools, and more importantly, as therapeutic agents (9, 
13, 70-72). Currently there are several inhibitors either 
approved or in clinical trials for the treatment of multiple 
cancers and strokes (71, 73). These inhibitors have the 
capability of entering cells and blocking protein degradation 
by the ubiquitine-proteasome pathway. They have also 
proven to be valuable tools for investigating the basic 
intracellular function of proteasomes and have facilitated the 
discovery of numerous novel regulatory functions of UPS.  

Proteasome inhibitors represent a novel class of 
anticancer drug (74). Preclinical studies have demonstrated 
that bortezomib, a dipeptidyl boronic acid, that is a selective 
and potent inhibitor of the 26S proteasome, decreases 
proliferation, induces apoptosis, enhances the activity of 
chemotherapy and radiation, and reverses chemoresistance in 
a variety of hematologic and solid malignancy models both 
in vitro and in vivo (75). It has been shown that bortezomib 
inhibits PKR-like endoplasmic reticulum kinase (PERK), and 
sensitizes pancreatic cancer cells to endoplasmic reticulum 
stress-mediated apoptosis (33, 76). Bortezomib was the first 
proteasome inhibitor to enter clinical trials. Recently, 
bortezomib received Food and Drug Administration (FDA) 
approval for the use of multiple myeloma and is being 
evaluated for the treatment of solid tumors (33, 34, 74, 77). 
The antineoplastic effects of bortezomib have been attributed, 
at least in part, to inhibition of IκB degradation leading to 
inactivation of the pivotal pro-survival transcription factor, 
NF-κB (74).  

In addition to anti-tumor effects, proteasome inhibitors 
also have direct impact on the inflammatory pathway. With 
the help of a proteasome inhibitor, IκB was the first substrate 
of UPS identified (78). Through regulation of IκB 
degradation, the UPS controls the activity of NF-κB, which 
activates the expression of many genes encoding key 
inflammatory mediators such as cytokines (TNF and IL-1), 
leukocyte adhesion molecules (ICAM, VCAM) (79), and 
enzymes (cyclooxygenase, nitric oxide synthetase) (71). In 
preclinical animal models, selective proteasome inhibitors 
effectively suppress inflammatory arthritis and other 
inflammatory conditions (80-84). In recent years, numerous 
novel drugs for the treatment of rheumatologic diseases have 
been successfully developed. The main approach has been to 
target cytokines, immune cells and their activation pathways 
(85). Hence proteasome inhibitors could represent a novel 
class of drugs through regulation of catabolism of 
pro-inflammatory proteins. On the other hand, proteasome 
inhibition stabilizes short-lived cyclooxygenase II, a critical 
enzyme involved in synthesis of inflammatory prostaglandins 

in the neuronal cell line, so their use could potentially 
exacerbates inflammation (86). 
 
Conclusion 
 
The UPS is a complex system that controls many important 
aspects of cell function. The covalent linkage of ubiquitin to 
protein substrates can selectively and specifically alter their 
fate through proteolytic and non-proteolytic pathways. Loss 
of normal homeostasis though many mechanisms, including 
stress or infection, can lead to aberrant cellular function and 
diseases. Increase in ubiquitinated products has been noted in 
a variety of pathophysiologic states associated with increased 
oxidative stress such as neurodegenerative diseases and 
coronary atherogenesis (39, 87). So far, dysregulation of the 
UPS has been linked to the pathogenesis of a variety of 
inherited and acquired diseases such as cancer, diabetes, 
stroke, graft injection, Alzheimer’s disease, amyotropic 
lateral sclerosis, multiple sclerosis, asthma, inflammatory 
bowl disease, autoimmune thyroiditis, inflammatory arthritis 
and SLE. The involvement of the UPS in the pathogenesis of 
inflammatory and autoimmune diseases is mediated through 
various mechanisms. Multiple lines of evidence have 
indicated UPS has the potential to be an exciting novel 
therapeutic target for the treatment of inflammatory and 
autoimmune diseases. 
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