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CD8 is a cell surface glycoprotein found in cytotoxic T lymphocytes, which are important components in 
cellular immunity, esp. in the immune response to cancer and chronic infections. There are two forms of CD8, 
either as an αα homodimer or αβ heterodimer. It acts as an “assistant” or co-receptor in the function of 
cytotoxic T cells where specific immunity is mediated by interaction of specific T cell receptor (αβTCR) and its 
ligand peptide major histocompatibility complex (pMHC). CD8 also binds to pMHC but away from the 
interface of pMHC and TCR contact, thereof no influence on the specificity of this interaction. If the TCR and 
CD8 bind to the same pMHC at the same time, CD8 is defined as a co-receptor, functioning through its 
signalling via its cytoplasmic tyrosine phosphorylation pathway; if CD8 binds to pMHC independently of the 
TCR, it is defined as an adhesion molecule. At present, the co-receptor function theory is dominated in the field. 
Recent study has also shown that murine CD8αα binds to TL antigen, an MHC homologue, therefore acts as an 
immuno-modulator. In this review, we discuss these current understandings of the three aspects of the CD8 
functions and their structural basis. Cellular & Molecular Immunology. 2004;1(2):81-88. 
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Introduction 
 
As science progresses, and the body of information 
concerning the functions and mechanisms of biological 
pathways invariably increases through experiment and 
discussion, our knowledge of the nature of the proteins 
involved typically broadens to encapsulate the new facts. 
With this always being the case in science, we often find 
that the more we know, the more there is to learn. One such 
example of these is CD8, a cell surface glycoprotein 
expressed on all cytotoxic T lymphocytes (CTLs), or killer 
cells.  

CD8 was first discovered as a cell surface marker in 
mice, useful only to distinguish between cytotoxic T cells 
and the two subsets of CD4 helper T (Th) cells (Th1 and 
Th2) (1, 2). At this time, these cell surface markers were 
termed lyt-1 (expressed on helper T cells) or lyt-2/3 
(expressed on cytotoxic T cells) (3). Later experiments 
revealed human homologues of these markers (leu-1, 2a & 
2b) (4) suggesting an important functional role due to their 
evolutionary conservation. This function, due to the ability 
of CD8 to bind to the same peptide/major histocom- 
patibility complex (pMHC) as its corresponding T cell 

receptor (TCR), was first thought to be that of an adhesion 
molecule (5), increasing the avidity and/or stability of the 
TCR/pMHC interaction (3, 6). This idea was later revised 
due to the extremely low binding affinity of CD8/pMHC 
and the failure to detect any specific enhancement to 
TCR/pMHC binding (7). Presently, CD8 is described most 
often as a co-receptor to TCR function because it binds to 
the same pMHC as the TCR (8). As a co-receptor, it is 
thought to have an important role in the signalling via 
p56lck to induce TCR activation through the CD3ζ chain 
tyrosine phosphorylation pathway (9, 10). There is also 
evidence to suggest that CD8 is involved in the recruitment 
of lipid rafts (11), which interact with the TCR/CD3 
complex, also possible important in TCR signalling and 
activation (12, 13). Although CD8 is primarily recognized 
as a co-receptor, and the evidence is very much in favour 
of this being its role, there has recently become available 
data, which expands the function of CD8 further to that of 
an immuno-modulator. Leishman et al. carried out 
experiments to show that intestinal intraepithelial T 
lymphocytes (iIELs) express CD8 that has the ability to 
bind to a non-classical MHC class I-like molecule, TL 
antigen (TL), independently of TCR/CD3 but still signal 
the TCR through p56lck type pathways (14). These data 
provide evidence that CD8 can modulate the immuno- 
logical response of the TCR without being classed as a 
co-receptor or adhesion molecule by definition. 

This review will expand upon the issues of CD8 as an 
adhesion molecule, a co-receptor (Figure 1) and an im- 
muno-modulator (Figure 2). A more detailed account of the 
structure and function of CD8 (in comparison with CD4) as 
well as an account of its evolutionary and cross-species 
dynamics are described. Lastly, possible future research 
will be considered to uncover more about its function and 
the potential for manipulation of this molecule for use in 
therapy. 
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Comparative view of the structure and 
function of CD8αα,  CD8αβ and CD4 
 
CD8 forms dimers in its native state; these dimers can be 
of two sorts. The first is the αα homodimer form, encoded 
by the leu-2a gene in human (lyt-2 in mice). The second is 
the αβ heterodimer encoded by leu-2a and leu-2b (lyt-3 in 
mice) genes (3, 15). The structural and functional di- 
fferences between these two forms are considered. 
 
Structure and function of CD8αα 
The α chain of CD8 is physically larger than the β chain at 
34-37 kD. It is comprised of an extracellular 122 amino 
acids N-terminal Ig-like domain with a 48 amino acids 
stalk region. A transmembrane domain separates this from 
the cytoplasmic region, which is comprised of 28 amino 
acids (15) and contains two vicinal cysteine motifs 
responsible for src kinase p56lck interaction via a zinc 
chelate complex (16). Two α subunits, covalently linked by 
a disulphide bond, form the homodimer CD8 structure 
(17).  

The expression of CD8αα is present on αβ T cells 
(although CD8αβ is predominant) and exclusively on NK 
cells and γδ T cells (18). The binding affinity (Kd) of 
CD8αα/pMHC analyzed by surface plasmon resonance 
(SPR) using BiacoreTM is around 0.2 mM with kinetics of 
around 2 to 3 orders of magnitude faster than that of TCR/ 
pMHC binding (7). The heterologous form of CD8 
(CD8αβ) shares these characteristics. The fast kinetics is 
thought to be important in ensuring that the binding of 

pMHC is dominated by the TCR allowing immune 
recognition and response (19). The main function of the α 
chain has previously been determined as important for 
interaction with p56lck through its cytoplasmic domain, 
possibly resulting in a signalling cascade and T cell 
activation (20). The homologous form of CD8, however, 
has been shown to be a less effective T cell activator than 
its heterologous counterpart (21, 22). More recent data 
have alluded to a role as an immuno-modulator due to the 
ability of two α chains to bind in a cross-link fashion with 
non-classical MHC molecule (TL antigen) independently 
of TCR/CD3 complex (only shown in murine systems) (14). 
Evidence has also provided a role for the α chain in the 
recruitment of lipid rafts, via palmitoylation events, 
important in TCR signalling (23). 
 
Structure and function of CD8αβ 
The CD8β chain is 32 kD and its amino acid sequence 
shares homology with around 20% of that of the α chain 
(24). Both the stalk region of the β chain (10-13 amino 
acids shorter than the α chain (15)) and the cytoplasmic 
region are shorter than that of the α chain (22). There is no 
p56lck binding domain in the cytoplasmic region of the β 
chain, therefore it seems to have no involvement in 
signalling. Combined with the longer α chain, a recent 
proposed orientation by Kern et al. could confer greater 
thermodynamic stability to this form of CD8, explaining to 
some degree, its greater ability to induce αβ T cell 
activation (15). These conformational differences have 
been the main area of study in alluding to the differences 
observed in the two forms of CD8. 

 
 
 

Figure 1. Schematic of the interaction 
between TCR, pMHC, CD8αα co-receptor 
and the CD3 complex (it is thought that this 
complex forms a V-shape in reality 
(reviewed in Gao et al.)). pMHC I (red), 
anchored through its transmembrane domain 
to its antigen presenting cell (green), 
presents short peptides (yellow) to a T cell 
receptor (TCR in green, αβTCR hetero-
dimer) bound to a T cytotoxic cell (brown) 
via their transmembrane domains. The TCR 
recognizes the pMHC I via CDR1, 2 and 3 
loops from its variable α and β regions (vα
and vβ). CD8αα (purple) anchored to the T 
cell via its transmembrane domain, binds to 
the α3 domain of pMHC independently of 
the dominant TCR/pMHC interaction. This 
is thought to be of importance in activation
signals transduced via CD8 associated p56lck

tyrosine kinase to TCR/CD3ζζ mediated T 
cell activation. CD3 molecules contain 
tyrosine kinase activation motifs (TKAMs), 
CD3εσ and γε have one each, ζζ possesses 
three. These TKAMs are thought to be 
important in acting as part of p56lck to 
ZAP-70 kinase pathways and TCR 
signalling. 
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Although the αβ form shares much of its binding 
affinity characteristics with CD8αα, data have shown T 
cell activation to be more effective when it is expressed (25, 
26). A recent report, using a chimeric form of CD8α with 
the stalk region replaced by the CD8β region, has 
implicated the stalk region in mediating this difference (27). 
This is most likely due to specifically regulated O-linked 
glycosylation modifications that are important during 
binding to pMHC, which only occurs in the β chain (19, 
27). This function is also of importance when considering 
negative and positive selection events during thymocyte 
maturation, due to the restriction in TCR activating peptide 
repertoire these glycosylations would invoke. Increased T 
cell production of interleukin-2, a cytokine important for 
CTL maturation and activation (28), is another 
characteristic associated with CD8β expression only (29). 
Expression of high affinity CD8αβ/pMHC is thought to be 
crucial during positive selection when binding to 
self-pMHC is required, and this interaction becomes much 
weaker during negative selection allowing the TCR to 
become dominant to ensure self-reactive T cells are 
destroyed (30, 31). As with the α chain, the β chain is 
palmitoylated, leading to lipid raft recruitment thought to 
be important in signalling pathways (11, 16, 31-33).  
 
Structure and function of CD4 
CD4, unlike CD8, is expressed exclusively on T helper, 
rather than T cytotoxic cells and interacts with MHC class 
II (pMHC II) rather than MHC class I (pMHC I) molecules 
(8). Also unlike CD8 species, it classically forms only a 
monomeric rather than a dimeric molecule on the cell 

surface (34), although new evidence has highlighted the 
possible role of dimeric and oligomeric forms of functional 
CD4 (35). The monomeric form of CD4 comprises of four 
Ig-like domains (D1-D4), a single transmembrane domain 
followed by a short cytoplasmic tail (36, 37). Crystal 
structures of CD4 have led to the identification of short 
linker regions between D2, D3 and D4 allowing for a 
degree of CD4 flexibility (34, 36, 38), unlike the rigidity 
retained by CD8 molecule. The N-terminal Ig-like V 
domain interacts with the α2 and β2 proximal domains of 
the pMHC II molecule (34). In this way, it binds in a 
dissimilar orientation to CD8, which forms a “clamp” like 
bond to pMHC. Although key differences exist in the 
binding modes of CD4 and CD8, both bind to pMHC 
independently of the TCR/pMHC and do not play a 
physical role in the dominant peptide interaction.  

The main consensus for the function of CD4, is that of 
a co-receptor involved in TCR signalling, but not critical 
for TCR/pMHC binding (34, 39, 40). p56lck interaction and 
subsequently TCR activation via phosphorylation events 
involving the CD3ζ chain occurs via the N-terminus of the 
cytoplasmic tail of CD4 via a zinc clasp (41, 42). More in 
function than in structure, CD4 and CD8 are much alike. 
 
Evolutionary facts and functional diversity of 
CD8 in different species 
 
CD8 has been studied in a number of model organisms 
including mice, human and fish. By comparing the function 
and identifying gene homology, a broader picture of a 
conserved role (if any) for CD8 can be identified. 

 
 
 
 

Figure 2. Schematic of CD8αα (purple) 
bound to TL antigen (MHC I-like molecule 
in red). CD8αα, bound to an intestinal 
intraepithelial T lymphocyte (iIEL in brown) 
via its transmembrane domain can bind to TL 
independently of TCR. TL, bound to an 
epithelial cell (green) via its transmembrane 
domain, interacts with CD8αα via its α3 
domain. This interaction causes CD8αα
associated p56lck activation and subsequent 
initiation of ZAP-70 pathways. This can 
mediate iIEL responses in the absence of 
TCR/pMHC binding. In this way CD8αα
acts as an immuno-modulator. 
 
 
 
 



84                                                       CD8: Adhesion Molecule, Co-Receptor and Immuno-Modulator 

Volume 1  Number 2  April 2004 

As previously discussed, CD8 was first discovered as a 
cell surface marker in mice, used to identify different 
populations of T cells. As described by Ledbetter et al., 
lyt-1 (CD4) is expressed only on helper T cells, whereas 
lyt-2 (CD8α) and lyt-3 (CD8β) are expressed exclusively 
on cytotoxic T cells (4, 15). Human homologues to these 
genes were later described by Ratnofsky et al., leu-3 (lyt-1), 
leu-2a (lyt-2) and leu-2b (lyt-3) (3). It is commonly 
accepted that CD8 homologues exist in all mammals due to 
the evolutionary conservation of the genes and the 
similarities that exist in the workings of the immune 
systems of these organisms. Not only mammalian species 
share CD8 co-receptor homology, birds and fish also share 
many immunological genes, which confer similar functions. 
Chickens are one of the more widely studied avian species 
sharing specific sequences in genes that encode for both 
CD4 (CT4) and CD8 (CT8)-like proteins (43). Similar 
findings have been described in rainbow trout, using a 
degenerate primer based PCR protocol to identify 
CD8α-like sequences. This study indicates that CD8 genes 
have been conserved for over 400 million years and have 
evolved little in vertebrate systems (44). 

The genes may well be conserved for CD8, but the 
immunology and physiology of different species such as 
human, mice, birds and fish are diverse. Is then the 
function of CD8 co-receptor also conserved, or does it have 
a multitude of roles as we consider different organisms?  

One well-documented fact about human CD8 (hCD8) 
is its role as a co-receptor and its ability to bind to pMHC 
“away” from the direct contact interface of TCR/pMHC I 
acting as a T cell activator via p56lck mediated pathways (8, 
39, 41). When compared to murine CD8 (mCD8), we find 
almost identical functionality. Some key differences, 
however, include the affinity of mCD8, which is in the 
region of four times stronger than that of hCD8 with more 
overall contact, although this does not seem to endow 
mCD8 with any greater functionality (32), although some 
evidence exists implicating mCD8 with a greater role for 
TCR/pMHC stability than hCD8 (45). Studies comparing 
the crystal structures of hCD8 and mCD8 to pMHC I, have 
confirmed that, although some structural differences in 
binding orientation do exist between the two species, 
overall functional homology is maintained, i.e. neither 
mCD8 nor hCD8 has any contact with the peptide of the 
TCR/pMHC complex (46). Both bind to the α3 domain of 
the pMHC molecule inducing a conformational twist either 
away (mCD8) or toward (hCD8) the T cell to allow 
binding to occur (there has been some discussion on 
whether this shift mediates a similar change to the 
TCR/pMHC interaction, e.g. Gao and Jakobsen, 2000). 
There are also some differences in the pattern of hydrogen 
bonding between the two species. In human, three 
hydrogen bonds are formed between the T cell proximal 
CD8αα subunit and the MHC α2 domain, in addition to 
the hydrogen-bonding between CD8αα and pMHC heavy 
chain α3 domain, light chain β2m (17). In the murine 
model hydrogen bonds are exclusively formed between the 
heavy chain α3 domain and light chain β2m of the pMHC 
and N-terminal amino acids in the CD8α chain (47). 
Recent data, using murine CD8αα on intestinal intra- 
epithelial T lymphocytes have suggested an immuno- 

modulator type role for CD8 (14, 48). Whether this is also 
true for hCD8 has not yet been explored, although this will 
be discussed in more depth later. The function of CD8 
seems to be of a similar nature in avian models as well. 
Experimental data indicate that CD8 in avian models also 
interact with a tyrosine kinase molecule sharing homology 
to the mammalian p56lck (49) mimicking the hCD8 in TCR 
signalling and activation. As we move away from 
mammalian and avian models and consider fish, we do 
observe more of a difference in CD8, both structurally and 
functionally. Studies involving rainbow trout confirm that 
the cytoplasmic tail of the CD8α molecule in this species 
lacks the consensus sequence required for interaction with 
a p56lck-like molecule (44). Whether it interacts with other 
signalling molecules is not yet known, although it does 
contain a highly charged proximal portion of the consensus 
motif, allowing this possibility to be the likely target for 
future work (44).  
 
CD8 functions: adhesion molecule versus 
co-receptor 
 
CD8 was first discovered as a cell surface marker 
important for the initial discovery that a heterologous 
population of lymphocytes existed as part of the immune 
system (50). Later, this information was expanded 
somewhat describing not only different populations 
according to cell surface marker, but also in terms of 
immunological function (2, 51, 52). This indicated that 
specific roles existed for these cell surface markers in 
immune functions. Experiments using antibodies against 
the markers provided evidence that T cell activation is 
reliant on their functions (51, 53, 54). Definitively, CD8 
can be classed as a co-receptor (Figure 1). This statement is 
validated due to the nature of CD8 to bind to the same 
pMHC as its TCR, without being directly involved in 
peptide recognition (17). 
 
Adhesion molecule 
CD8 has been shown to attach to the α3 domain of pMHC 
I in an antibody/antigen type conformation with (in human 
complex) or without (in murine complex) hydrogen 
bonding between the α2 and β2m domains (17, 46). For the 
CD8αα/pΜΗC Ι complex structure, it has been determined 
that binding is asymmetric with one chain contributing 
around 75% of the interaction. What percentage of the 
binding the β chain commands is still under scrutiny (17, 
21). Mutagenesis data indicate that residues 223-229 of the 
MHC α3 chain are of particular importance in the CD8 
interaction (55). These residues form a loop, which remains 
flexible pre-CD8 binding, but becomes locked between 
CDR1-like and CDR3-like loops within the extracellular 
Ig-like domain of both CD8α chains (17). Residues Gln 
115, Asp 112 and Glu 128 have also been shown as crucial 
factors in the MHC α2 domain (by further mutagenesis 
work) for successful CD8 binding (47). It was first thought 
that this CD8 (and CD4)/pMHC complex was needed 
solely to add stability to the TCR/pMHC complex, 
endowing additional affinity of the T cells to pMHC on 
antigen presenting cells (5, 6, 56). This theory was later 
expanded upon giving rise to the idea of CD8 and TCR 
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signalling via tyrosine kinase p56lck pathways (6, 42, 56, 
57). Presently, the idea of CD8 as an adhesion molecule is 
unlikely due to SPR analysis indicating a significantly 
lower Kd (binding affinity) when compared to other 
adhesion molecules such as CD2 and CD48 (58, 59). Also, 
no conformational changes to the TCR/pMHC complex 
occur with/without CD8 binding; therefore, CD8 does not 
induce an energetically favourable shift in binding 
properties. Therefore the most commonly accepted role for 
CD8 is that of a TCR signalling molecule as a co-receptor. 
 
TCR signalling  
The most important function of CD8 when considering 
αβTCR is its involvement in activation pathways. The 
CD8α tail region is associated with tyrosine kinase p56lck 
via two vicinal cysteines that interact through a zinc 
chelate complex (22, 57, 60). Upon binding with the α3, α2 
and β2m of pMHC, activation pathways are thought to 
initiate creating a signalling cascade originating from 
CD8α linked p56lck and leading to ZAP-70 activation on 
the ΤCR/CD3 complex (61). CD3 is a signal transducer 
with three subunits. CD3δε and γε heterodimers containing 
a single tyrosine kinase activation motif, and a disulphide 
linked ζζ homodimer with three tyrosine kinase activation 
motifs are responsible for transmitting the signal from the 
CD8α chain to the TCR (47, 62). Knockout studies 
including the CD3 subunits have confirmed the data 
(63-67).  

CD8β chain is not directly involved in p56lck signalling 
as there is no cytoplasmic tail sequence with a tyrosine 
phosphorylation site, so it would not be unexpected to find 
the αβ heterodimer as a poorer TCR activator than the 
homodimer. This, however, is not the case. It has been 
experimentally proven the heterodimeric form of CD8 is a 
more potent activator than the homodimeric form (25). It 
has been suggested that the unique structure of CD8β 
stabilizes the interaction between CD8α and p56lck 
allowing more efficient transduction (29, 68). Perhaps 
more interesting is the role of the β chain in the creating of 
lipid rafts. The CD8β cytoplasmic tail is palmitoylated at a 
membrane-proximal cysteine partitioning CD8 into lipid 
rafts, or detergent-insoluble membranes (11). These rafts 
are made up of ordered microdomains, enriched with 
sphingolipids and cholesterol (11-13, 69, 70). Molecules 
such as phosphatases (CD45) are excluded allowing 
uninhibited TCR signalling to take place. Other important 
molecules such as lck and the linker for activation of T 
cells (LAT) have been shown to associate increasingly with 
CD8β during raft recruitment, molecules vital to T cell 
activation (71, 72). These events inevitably lead to lck 
phosphorylation, mobilization of intracellular calcium and 
ZAP-70/CD3 activation (16). Moreover, it has been 
postulated that CD8β can form a functional link with CD3δ, 
which in turn is part of the TCR/CD3 complex, creating an 
important bond between TCR and co-receptor (16). How 
this interaction is formed and how it functions are not yet 
known, but knockout mice lacking either CD8β or CD3δ 
have been shown to suffer from extremely poor TCR 
mediated activation (73). There is also evidence to suggest 
that CD8/pMHC binding is enhanced by the β chain due to 
the presence of unique glycans on the stalk region that 

modulate the distal binding surface of the CD8αβ globular 
head domain and therefore, its link to pMHC (74). 
 
Immuno-modulator 
 
Recent evidence has implicated a new role for CD8αα in 
murine intestinal intraepithelial T lymphocytes (iIELs) that 
reside in the epithelial tissue layer barrier, which shields 
internal tissues from the external environment (75). This 
role is that of an immuno-modulator, rather than a co- 
receptor or adhesion molecule (Figure 2). The distinction 
between these two functions is in the ability of CD8αα to 
bind to an MHC I-like thymus leukemia antigen molecule 
(TL) independently of the TCR (14). 

The expression of the monomeric form of CD8 is 
unusual on αβTCR expressing T cells because of the 
increased efficiency observed in TCR mediated T cell 
activation in cells expressing the dimeric form (21). iIELs 
may mature in a more specific environment compared to 
other T cells, in this way they may only be exposed to 
peptides expressed by intestinal epithelial cells, which in 
turn could influence activation pathways in the periphery 
(76). Lieshmann et al. found that TL binds very strongly to 
CD8αα due to cross-linkage interaction involving both 
CD8 chains (76). The crystal structure of this complex has 
shown that one CD8αα homodimer binds to one TL 
molecule (77). The affinity of binding between CD8αβ and 
TL was not of the same affinity and deemed insufficient to 
operate independently of TCR/TL interaction (14). Binding 
data have indicated that the complementary binding loops 
of CD8α interact differently with the β2m domain of TL 
and the conventional MHC is perhaps in part responsible 
for this difference (78). In this model, the TCR does not 
interact with TL, rather, the high affinity bond between 
CD8 and TL, and the subsequent p56lck signalling 
pathways are sufficient to induce or suppress immune 
response (48). Whether the ability of CD8αα to act as an 
immuno-modulator can be transferred to NK cells and γδ T 
cells, where it is also commonly expressed, is still a matter 
for scrutiny. Recent data concerning the functions of TL 
have indicated that both αβ and γδTCR recognize it inde- 
pendently of antigen (79). Also, due to the self-reactive 
nature of CTL that bind TL and the low affinity of this 
interaction, it has been postulated that CD8αα may be 
required for activation in this unique situation (48). 
Therefore, the role of CD8 as an immuno-modulator may 
only occur in this isolated environment and may not 
contribute towards a broader function for CD8αα 
expression. 
 
Conclusion and future perspectives 
 
Although evidence exists for a new role for CD8 as an 
immuno-modulator, this function seems to be isolated to a 
unique subpopulation of T cells in the murine system. 
Therefore, the present experimental data point strongly to 
the major role of co-receptor for CD8 important in TCR 
signalling and T cell activation. With this in mind, one of 
the major benefits of CD8 mediated research may come in 
the form of therapeutic drugs for regulation of immune 



86                                                       CD8: Adhesion Molecule, Co-Receptor and Immuno-Modulator 

Volume 1  Number 2  April 2004 

responses for conditions such as cancer, allergy and 
autoreactive diseases such as type I diabetes. It has already 
been shown that blocking CD8 with anti-CD8 antibody, 
soluble CD8, or synthetic peptides drastically reduces 
immune responsiveness (reviewed in Gao et al., 2002). 
Refinement in the control of CD8 could, therefore be 
useful in immune suppression for organ transplantation 
patients.  

There are still important discoveries to come in the 
future for CD8 based research. The structure of CD8αβ has 
not yet been fully described, and a broader understanding 
of the function of CD8αα as an immuno-modulator and in 
other potential roles will, no doubt, be useful. Although 
many models have been proposed, we still lack the triple 
complex crystal structure of CD8/pMHC/TCR needed to 
understand the physical orientation of CD8 in relation to 
TCR and CD3. These discoveries and others will be key 
for our continuing increase in knowledge of antigen 
recognition and TCR signalling and will help to define 
what there is still to learn. 
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