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Development of Dendritic Cell System 
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The dendritic cell system contains conventional dendritic cells (DCs) and plasmacytoid pre-dendritic cells 
(pDCs). Both DCs and pDCs are bone marrow derived cells. Although the common functions of DCs are 
antigen-processing and T-lymphocyte activation, they differ in surface markers, migratory patterns, and 
cytokine output. These differences can determine the fate of the T cells they activate. Several subsets of mature 
DCs have been described in both mouse and human and the developmental processes of these specialized DC 
subsets have been studied extensively. The original concept that all DCs were of myeloid origin was questioned 
by several recent studies, which demonstrated that in addition to the DCs derived from myeloid precursors, 
some DCs could also be efficiently generated from lymphoid-restricted precursors. Moreover, it has been shown 
recently that both conventional DCs and pDCs can be generated by the Flt3 expressing hemopoietic pro- 
genitors regardless of their myeloid- or lymphoid-origin. These findings suggest an early developmental 
flexibility of precursors for DCs and pDCs. This review summarizes some recent observations on the deve- 
lopment of DC system in both human and mouse. Cellular & Molecular Immunology. 2004;1(2):112-118. 
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Introduction 
 
Dendritic cells (DCs) are sparsely distributed bone 
marrow-derived, phenotypically and functionally hetero- 
geneous leukocytes. As the most potent antigen-presenting 
cells (APCs), DCs are specialized for the uptake, processing, 
transport and presentation of antigens to T cells (1-4), and 
are capable of priming naïve T cells (3). Although the 
development of DCs from early hemopoietic precursors is 
not fully understood (5, 6), terminal stages of DC deve- 
lopment and their life cycle during an immune response are 
well defined. Immature DCs reside in peripheral tissues 
and constantly capture antigens from the local environment, 
process and present them in association with surface major 
histocompatibility complex (MHC) molecules. The 
presence of microbial products or tissue damage in the 
environment that the DCs sample initiates their migration 
to peripheral lymphoid organs and their transition from 
antigen-capturing cells into antigen presenting cells. The 
migration and functional transition of DCs correlate with: 
decreased antigen uptake, increased half-life of surface 

MHC-peptide complexes, upregulation of co-stimulatory 
molecules, altered expression of chemokine receptors and 
production of cytokines that are crucial for effector T cell 
(helper or cytotoxic) differentiation (3). As a result, 
antigens captured by DCs are, in the cell bound form, 
transported to and concentrated in the peripheral lymphoid 
organs for presentation to antigen-specific T cells. 

Not all DCs share this common life cycle. Several DC 
types with different biological features have been identified 
in different tissues, including Langerhans cells (LC) in the 
epidermis, interstitial DCs in various tissues, thymic DCs 
and DC populations found in lymphoid organs. Differences 
in the tissue distribution, phenotype and function indicate 
the existence of a heterogeneous population of DCs. DCs 
were originally considered to be of myeloid origin and 
closely related to monocytes, macrophages and granulo- 
cytes. Recent studies, however, suggest that DC can be 
generated along distinct developmental pathways and can 
originate from precursors of different hemopoietic 
lineages.  

Another cell type, which belongs to the DC system, is 
the so-called plasmacytoid pre-DCs (pDCs). The pDCs 
were originally identified in human blood and lymphoid 
tissues as plasmacytoid T cells or plasmacytoid monocytes 
due to their morphological similarity to plasma cells and 
expression of certain T cell markers and MHC class-II 
molecules. These cells, also termed pDC2 in human, have a 
phenotype different from DCs (CD11c-CD45RAhiCD11b- 

MHC-IIloIL-3RhiCD4+) and are efficient type I interferons 
(IFNs) producing cells (7). Recently, the mouse equivalent 
has also been identified in the mouse blood (8) and in all 
lymphoid tissues (9-12).  

In this review we will discuss the heterogeneity of DCs 
and pDCs and their development from distinct hemopoietic 
precursors. 
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Heterogeneity of DCs and functional diversity 
of DC subsets 
 
Different subsets of DCs defined by their unique 
phenotypes and functional potentials, are present in 
lymphoid tissues. Five major DC subsets have been 
identified in lymphoid tissues of uninfected laboratory 
mice (summarized in Table 1). The CD11c and MHC 
class-II (MHC-II) molecules are expressed at high levels 
on all mature DCs in mice and co-expression of both 
markers is used to define DCs phenotypically (13). Four 
other markers are currently used to further define DC 
subsets: CD4, CD8αα homodimer, CD11b (Mac-1) and 
CD205 (14). 

In mouse, thymic DCs contain mainly CD8α+CD4- 

CD205hiCD11b- (~70%) and CD8α-/loCD4-CD205+CD11b- 
(~30%) populations (14). Whereas in the spleen and lymph 
nodes (LNs), only about 20% of DCs are of the 
CD4-CD8α+ phenotype. The majority of DCs in the spleen 
are CD8α- and can be further divided into two subsets 
based on CD4 expression: a major CD4+CD8α-CD205- 

CD11b+ subset and a minor CD4-CD8α-CD205-CD11b+ 
subset. In comparison, the CD8α- DCs in LNs can be 
divided into three subsets on the basis of CD4 and CD205 
expression. The CD4-CD8α- CD11b+ is the major DC 
population and can be further divided into CD205+ and 
CD205- cells, while the CD4+ CD8α-CD11b+ DCs (the 
major DC subset in mouse spleen) form only a minor 
subset in LNs (15). One third of DCs from the 
skin-draining LNs and only a few DCs from mesenteric 
LNs and spleen are CD4-CD8αloCD11b+ CD205hi. Since 
these DCs also express langerin (CD207), the marker 
present on Langerhan’s cells (LCs), and high levels of 
MHC-II and costimulatory molecules, it has been 
suggested that these cells are the post-migration mature 
form of LCs (15). These various DC subsets also differ 
with respect to their function and distribution in distinct 
microenvironments. The CD8α+CD205+ DCs are mainly 
found in T-cell rich areas of the peripheral lymphoid organs 
such as the periarteriolar lymphatic sheaths (PALS) of the 
spleen (16) and paracortical regions of the LNs (17). In 
contrast, the CD8α- DCs localize in splenic marginal zones 
(16) and in subcapsular sinuses and immediate peri- 
follicular zones of LNs (18), with a tendency to migrate to 
T-cell regions on stimulation with microbial products 

(19-21). 
The presence of multiple DC subsets suggests that 

different DC subsets may be specialized for certain 
functions including induction of both immunological 
tolerance and effective immuno-stimulation. Indeed, there 
are numerous reports on functional differences between 
DC subsets. However, the clear-cut view of functional 
specialization among DC subsets is unsustainable due to 
both functional diversity and plasticity of these DC subsets. 
The CD8α+ DCs, for example, display immuno-regulatory 
or tolerogenic induction ability (22-25), but also exhibit the 
strongest ability to induce a T helper 1 (Th1) response (26, 
27) by secreting high amounts of the Th1 polarising 
cytokine IL-12 (16, 28). In addition, DCs exhibit great 
functional plasticity, which is induced by the different 
tissue environments (29, 30), the response to different 
microbial stimuli (31, 32) or the duration of DC activation 
(33). Based on these observations, two distinct views have 
emerged on how all these phenotypic and functional 
varieties are created during the development of DC system. 
The specialized DC lineage model suggests that the point 
of commitment to phenotypically and functionally defined 
DC subsets happens very early in hemopoiesis, so that DC 
subsets develop as separate lineages with distinct functions. 
The functional plasticity model, however, supports the idea 
that DC subsets represent different activation states or 
alternative cell fates of a single lineage dictated by the 
local microenvironment. Currently, there is no conclusive 
evidence to support exclusively either model. Further 
studies are needed to reconcile these different views. 

The mouse equivalent of human plasmacytoid DCs 
(pDCs) has been identified recently (9-12). These cells 
have a unique surface phenotype: CD45RAhiB220+CD11clo 

CD11b-MHC-IIlo (pDCs from Balb/c or Sv129 mouse 
strains also express Gr-1). Although similar to their human 
counterparts, mouse pDCs showed notable differences in 
the expression of a few surface molecules. In contrast to 
human pDCs which express high levels of IL-3R and are 
negative for CD8, mouse pDCs lack of high expression of 
IL-3R and some express CD8α. Currently, the biological 
role of CD8α expression on mouse DCs and pDCs is not 
yet clear. Similar to human pDCs, mouse pDCs express 
Toll like receptor (TLR) 7 and 9 (34), and could produce 
large amounts of type I IFNs in response to viral 
stimulation or bacterial oligonucleotides containing CpG 
motifs. Moreover, the same stimuli could induce pDCs to 

Table 1. DC subsets in mouse lymphoid tissues.
 

DC subsets Spleen Mesenteric 
lymph nodes 

Skin-draining 
lymph nodes Thymus 

CD8+CD4-CD205hiCD11b- ++* + + ++++ 
CD8-CD4+ CD205-CD11b+ ++++ +/- +/- 
CD8-CD4-CD205-CD11b+ ++ +++ ++ 
CD8-CD4-CD205+CD11b+ +/- ++ ++ 
CD8loCD4-CD205hiCD11b+ - +/- + 

CD8lo/-CD11b- (+)† 

 
CD8lo/-CD11b+ (+/-)

*The relative frequency of DC subsets is expressed by the number of ‘+’ symbols: 50-70% (++++), 30-50% (+++), 20-30% 
(++), 10-20% (+) and <5% (+/-). 
† The five major DC subsets are not all present in the thymus. 
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adopt the DC morphology and to become CD45RAlo 

CD11chiMHC-IIhiCD8α+ DCs in vitro (10, 12). However, 
these pDCs could not become DCs in vivo in the absence 
of microbial stimuli (12). These pDCs therefore may not 
serve as the precursors of conventional DCs under a steady 
state condition.  

In human, direct analysis of DC subsets freshly isolated 
from different tissues has been limited. In addition, the 
phenotypic differences between human DCs and mouse 
DCs (e.g. absence of CD8α expression on all human DCs) 
make it difficult to directly compare the development and 
functions of DC subsets between the two species. Blood is 
the only readily available source of human DCs, but it is 
mainly a source of immature DCs (iDCs) and the more 
specialized pDCs. Human blood DCs are also hetero- 
geneous in their expression of a range of markers, but 
many of these reflect differences in maturation or acti- 
vation states of DCs, rather than delineating separate sub- 
lineages (2, 35). Most of the insights into human DC 
subsets and their developmental origins have come from 
studies of their development in culture from iDC or from 
pDC. These studies have led to the concept of distinct 
streams of human DC development. However, the corre- 
lations between the DCs generated in culture and naturally 
occurring DC subsets in vivo is not clear. 

Similar to mouse DC subsets, the functional plasticity 
of a given human DC subset when exposed to different 
cytokines or pathogens makes it difficult to assign a fixed 
function to a particular DC lineage. Despite this plasticity, 
each human DC subset does appear to have a different 
functional bias. The evidence comes mainly from studies 
of the DC1 and DC2 populations generated from pre- 
cursors in culture (36, 37). Blood monocytes, termed pDC1, 
are the most commonly used precursor cells for generating 
human DC1 in culture. In the presence of M-CSF they will 
generate macrophages, but in the presence of GM-CSF and 
IL-4, the DC1 are generated after 6 days (38-40), and these 
DCs can be further matured to CD14-CD38+CD86+ 

MHC-IIhi DCs in the presence of TNF-α or LPS. The 
precursors for development of the second human DC 
subset, termed pDC2, are the interferon α/β producing 
plasmacytoid pDCs (41, 42) with a unique surface 
phenotype (CD4+, IL-3R+, CD11c-). These pDC2 respond 
to viral and microbial stimuli by producing type I IFNs. 
They express intracellular but not surface MHC class-II. 
When cultured with IL-3 plus CD154, or with microbial 
stimuli such as bacterial CpG or human herpes simplex 
virus (HSV), they become mature DCs, namely DC2. The 
pDC1 and pDC2 themselves express different sets of 
pattern-recognition receptors (43) and show corresponding 
differences in reactivity to different microbial products. 
The pDC1 express TLR 1, 2, 4, 5 and 8 and respond to the 
appropriate microbial ligands, including peptidoglycan, 
lipoteichoic acid and LPS, while pDC2 express TLR 7 and 9 
and respond to CpG oligonucleotides. The mature DCs 
generated from these precursors in culture also show 
functional specialization. CD154 activated DC1 were 
found to prime T cells to produce a Th1 response, whereas 
CD154 activated DC2 induced a Th2 response (42). The 
ability of DC1 to induce a Th1 response was associated 
with a high level of production of IL-12 p70, in response to 
the appropriate stimuli. Therefore, there does appear to be 

substantial lineage specialization within human DC 
subsets.  
 
Ontogeny of the DC system 
 
The maturation state of DCs has been suggested to be a 
determining factor for the induction of immune tolerance 
or immunity (44). It is well known that neonatal mice 
mount a limited immune response to infection and are more 
susceptible than adults to the induction of immunological 
tolerance following antigen exposure (45, 46). Understanding 
the mechanisms underlying this immunological feature is 
crucial in developing strategies for either enhancing the 
immune responses in the situation of microbial infection or 
suppressing it in the case of autoimmunity. The potential 
influence of DCs, the major inducers of effector T cell 
responses or tolerance (3, 44), on the functional state of the 
immune system at the early developmental stage has been 
studied. The recent studies have shown that DCs are present 
in lower numbers overall in the lymphoid tissues of neonatal 
mouse (47) and the relative incompetence of immune 
responses to microbial infection in the neonatal mouse is 
due to a low frequency of functionally mature DCs in 
mouse lymphoid tissues (48). It has also been shown that 
both CD11c+ DCs and CD45RA+ pDCs are detected in 
small numbers in mouse thymus as early as embryonic day 
17, suggesting a role of DCs in thymocyte development. 
Significant but low numbers of DCs and pDCs are present 
in the spleen of day 1 newborn mice. The full complement 
of DC system is not acquired until 5 weeks of age. The 
composition of DC populations in the spleen of young mice 
differed significantly from that found in adult mice, with a 
much higher percentage of the CD4-8α+ DC population 
(50-60% compared to 20-25% in adult) and a much lower 
percentage of CD4+8α- DC population (10-20% compared to 
50-60% in adult) (47, 49). Although the pDCs of young 
mice showed a capacity to produce IFN-α comparable with 
that of adult mice, the conventional DCs of young mice 
were less efficient than their adult counterparts in IL-12p70 
and IFN-γ production, and in antigen presentation (47). 
These observations suggest that the neonatal DC system is 
not fully developed and innate immunity is the dominant 
form of immune response. The complete DC system 
required for adaptive immunity in mouse is not fully 
developed until 5 weeks of age.  

Similarly, it has also been shown that the DCs from 
human cord blood have a limited ability to induce either adult 
or cord blood T cells to proliferate in response to a given 
concentration of phytohemagglutinin or concanavalin A. 
Adult blood DCs, on the other hand, induce stronger mitogen 
responses of cord blood and adult blood T cells. This relative 
deficiency in T cell responses induced by cord blood DCs can 
be overcome by increasing the concentration of mitogen or 
the numbers of DCs in the culture. Therefore, the deficiency 
in neonatal primary immune responses may, in part, reflect 
the reduced function of DCs (50). 
 
Development of DCs from hemopoietic 
precursors 
 
It is well known that DCs and pDCs are continuously 



Cellular & Molecular Immunology                                                                               115 

Volume 1  Number 2  April 2004 

produced from bone marrow (BM) hemopoietic stem cells 
(HSC) (51). But, the exact precursors which can give rise 
to DCs and pDCs in vivo remain elusive. It has been 
widely accepted that all HSC-derived cells develop either 
as a part of lymphoid or myeloid pathway through a 
multipotent but lineage-restricted common lymphoid pre- 
cursor (CLP) for B, T and NK cells, or common myeloid 
precursor (CMP) for granulocytes, monocytes, macro- 
phages, erythrocytes and megakaryocytes, with subsequent 
commitment and differentiation along a single lineage (52, 
53). Recent studies on DC development provide evidence 
that all DC subsets can be generated along both myeloid 
and lymphoid pathways, from CMP or CLP (54-56).  
 
Development of DCs from myeloid precursors 
DCs were originally believed to be of myeloid origin, 
based on certain similarities to monocytes/macrophages in 
terms of morphology, phenotype, endocytic potentials and 
enzymatic activities. Indeed, in the presence of GM-CSF, 
DCs and granulocytes or macrophages can be produced in 
cultures from mouse blood and BM proliferating MHC 
class-II-negative precursors (57, 58). All three cell types 
can develop from a single BM-precursor derived colony 
grown in semisolid medium – a confirmation that they 
share a common precursor. In contrast to phagocytic cells, 
DCs generated under these conditions can home to T-cell 
regions of lymph nodes and strongly activate naïve T cells 
in MHC-mismatched mixed leucocyte reaction (MLR). In 
human, it was also demonstrated by clonal assay that a 
single BM bi-potential CD34+ precursor could form mixed 
colonies of monocyte/macrophages and DCs in the 
presence of GM-CSF and TNF-α (59, 60). The DCs 
generated, however, resembled Langerhans cells (LCs). 
Additional support for the myeloid origin of DCs came 
from the observation of their direct differentiation from 
peripheral blood monocytes, without proliferation and 
under various experimental conditions. Mouse monocytes 
can be induced in vitro by GM-CSF and IL-4 to 
differentiate into DCs that are capable of inducing T cell 
proliferation in MLR (61). Human blood monocytes can 
also serve as precursors for the in vitro generation of DCs 
in the presence of GM-CSF and IL-4 (38-40). The direct 
evidence for the myeloid origin of some DCs came from 
the studies on BM CMP as mentioned previously (54). It 
has been shown that all the major DC populations found in 
mouse lymphoid tissues can be generated in vivo by the 
CMP (55, 56). 

The epidermal LCs are recognized as a separate DC 
subtype and can be distinguished by the expression of 
langerin (CD207), E-cadherin and the presence of Birbeck 
granules. When mouse BM c-kit+ lineage marker negative 
cells were cultured in the presence of GM-CSF, stem cell 
factor (SCF) and TNF-α, two independent DC precursor 
populations were generated (62). The CD11b-/dullCD11c+ 
precursors differentiated into E-cadherin+ LC-like cells in 
the presence of GM-CSF and TNF-α, while CD11b+ 

CD11c+ precursors differentiated either into CD11b-CD8- 
DCs in the same cultures or into macrophages when 
induced by M-CSF. This indicates a developmental 
separation between LCs and DCs. Similarly, two different 
developmental pathways are identified for the production 
of LCs and DCs from human CD34+ progenitor cells in the 

presence of GM-CSF, SCF and TNF-α. One pathway gives 
rise to LCs via a CD14-CD1a+ intermediate (63), while the 
other gives rise to DCs through a CD14+CD1a- bi-potent 
intermediate capable of differentiating into either DCs (64) 
or macrophages (63, 65). However, the lymphoid or 
myeloid lineage origin of the LCs has not yet been clearly 
defined. 
 
Development of DCs from lymphoid precursors 
The first suggestion that DCs might be related to lymphoid 
lineage came from the finding that the CD8, CD2, CD25 
and BP-1, typical lymphoid markers, were expressed on 
the surface of mouse thymic DCs and a subset of splenic 
DCs (66, 67). The first evidence came from the hemo- 
poietic reconstitution studies with the earliest intrathymic 
lymphoid-restricted CD4loc-kit+Sca-1+Sca-2+ (CD4lo) pre- 
cursors (68, 69), which showed the development of 
predominantly the CD8+ DCs (70, 71) in addition to T, B 
and NK cells (72) and limited development of CD8- DCs 
and myeloid cells in mouse spleen. In contrast, BM HSC 
generated both CD8+ and CD8- DCs in the spleen after 
reconstitution (71). These results led to the hypothesis that 
the CD8+ DC subset might represent a lymphoid DC 
lineage. The intrathymic CD4lo precursors can also 
generate DCs in cultures, with a 70% cloning efficiency, in 
the presence of cytokines (TNF-α, IL-1β, IL-3, IL-7, SCF, 
Flt-3L and CD40L) that support DC development (73, 74). 
However, GM-CSF, the essential cytokine required for DC 
development from myeloid precursors in culture, is not 
required for generation of DCs from these CD4lo 
precursors.  

The recent studies on mouse BM CLP provided direct 
evidence for the lymphoid origin of some DCs. The BM 
CLP can generate all DC populations identified in 
lymphoid tissues, although there is a strong bias to the 
development of CD8+ DC subset (55, 56). In comparison to 
CMP, CLP are more potent in DC production on a per cell 
basis. However, the CLP are less numerous than CMP in 
normal mouse BM. Therefore, the overall contribution of 
CLP- and CMP-derived DCs may be similar in mouse 
lymphoid organs. The functional capabilities of DCs 
derived from different hemopoietic precursors are yet to be 
investigated. 

Human progenitor cells with lineage restrictions similar 
to those of the CLP in mouse have also been described and 
were shown to generate DCs in vitro (75). However, it is 
not clear if these precursors can generate all human DC 
subsets. 
 
The Flt3 expressing hemopoietic precursors are the 
precursors of both DCs and pDCs 
The fact that both CMP and CLP can generate all the DC 
populations suggests plasticity in developmental potentials 
of these early precursors (76). It also suggests that the CMP 
and CLP that can give rise to DCs may share some 
common features. Flt3 ligand (Flt3L) has been shown to 
act as a growth factor for hemopoietic progenitors (77-79) 
and it can promote the expansion of both DCs and pDCs in 
vivo and in vitro (80-88). However, the cells responding to 
Flt3L treatment and subsequently giving rise to DCs and 
pDCs had not been fully characterized. Recent studies 
further examined the different mouse BM hemopoietic 
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precursor populations for the surface expression of Flt3 
(the receptor for Flt3L) and tested them for early DC and 
pDC precursor activity. It was demonstrated that most DC 
and pDC precursor activity was within the BM hemo- 
poietic precursors expressing Flt3 (89, 90). The majority of 
mouse BM CLP express high levels of Flt3 and these are 
the most efficient precursors of both DCs and pDCs (89). 
In contrast, only a small proportion of the CMP express 
Flt3, but the precursor activity for both DCs and pDCs is 
within this minor Flt3+ CMP fraction (89). The down- 
stream lineage committed precursors, including granulo- 
cyte and macrophage precursors (GMP) and pro-B cells do 
not express Flt3 and have no DC or pDC precursor activity. 
These findings demonstrate that the early precursors for all 
DC subtypes and for pDCs are within the BM Flt3+ 

precursor populations, regardless of their lymphoid or 
myeloid lineage orientation, and Flt3 signaling is required 
for the development of both DCs and pDCs (Figure1). 
 
Conclusion 
 
In this review, we summarized the evidence from recent 
studies on DC subsets and their development from 
hemopoietic precursors. The evidence leads to the current 
view that both DCs and pDCs in mouse can develop from 
the Flt3 expressing hemopoietic precursors regardless of 
their myeloid or lymphoid origin (as summarized in Figure 
1). Similar developmental pathways have been suggested 
for human DC populations. Further studies are required to 
determine the cytokines and environmental factors required 
for inducing the specialized functions of different DC 
subsets.  
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